
PAD-AlO5 381 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH F/9 9/2
TIlE-EXTENDED PETRI NETS. (U)
AUG 79 F B BERLIN

UNCLASSIFIED AIT-C1'79"20ST* uuhhI I hffuI hu
IIIIIIIIIIIIII
IIIEEEIIIIIEEE
IIIIIIIImIIIIII
IEEIIEEEIIEEEE
EhIIEIIEEEEIhE
EIEIhhEIhhEII



UN[4C LASS ________

CURITY CL .%SS17.7ATION, OF THIS PAGE (When Date e .vd)

READ INSTRUCTioNsCJ.-PEPOTDOCUMENTA.TIONPAGE IE~ECLPFIC (R
RIEPORT NU7ERt 2 OTACSINN RECIPIENT'S CATALOG NUMBER

t 7- T .O' ,.O3 R
If&at- S TYPE Of REPORT & PERIOD COVERLO

Time-Extendled Petri Nets./

iS PE RIG 6R.IZTO NARORIN AND. AEPOTRESBE

II. OROLING OGFICEIO NAME AND ADDRESS TO. RG4AELEEr"O&.TW

AFIT/NR A. IiI'\ Au 79

WPAFB OH 45433 dUMWOT PAGES

14 TR GNCY NAME 6 ADDRESS(IiW C Ii, )IS. SECURITY CLASS. (ot this report)

150. OECL ASSI FICATION/ DOWNGRADING

17. DISTRIBUTION STATEMENT (of the abstract entered in Stock 20, it dIfou'nt from Repart)

rU.iIcC'. LVNCK-I cjor. USAF

Air Force Institute of Tecno ogy(AC
Mght-Pattersofl AFB, OH 45433

19. KEY WORDS (continuean re verse side it necteetry and identifty *y block Ism-b.')

CD 20. ABSTRACT (Continue on reveres aide It neessary and Identify by block inumber)

ATTACHED

DD I P'OAm. 1473 EDITION OF INV6ISBOLT UNCLASS

iNOV65 S OBOLE E RITY CLASSIFICATION OF THIS PAGE (When Does Entered)



ABSTRACT

This thesis develops a new computer 
performance evaluation

structure called the time-extended 
Petri net which retains

logical synchronization and concurrency 
characteristics of

systems. Cost effectiveness is one of the important consi-

derations together with an evaluation of how it works. The

overall objective is to obtain a model to determine the

automatic data processing dollar's efficiency.

111

A. .,

T . .

J 
' "

i ; j: , S ..

T) "



*1 }~

I
I

11
I
V

I,

I
I
I
I
I

'I
U



II

1 To my parents,
William A. and Loraine S. BerlinI

and to my Lord,

Jesus, the Christ

I

101

I
I
I

I
"I am the vine, you are the branches;

I he who abides in Me, and I in him, he bears nuch fruit;
* ~for apart frml Me you can do nothing."

3 - Jesus Christ (John 15:5)

I|

I

1 8110 8 062



Coyih@17 yFakBetBri

AlIihsrsre.N ato ti hssmyb erdcdi
anIomo yaymas ihu h rte emsino h

auhr



I - -
I

I TI-EXTEN M PETRI NETS

by

FRAN BRETT BERLIN, B.S.

THSI

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillmnt

of the Reguirments

for the Degree of

ti

MASTER OF ARTSI
I
I
~THE UNIVERSITY OF TEXAS AT AUSTIN

August 1979

1



FREFACE

QOmputer performance evaluation (CPE) is primarily a matter

j of econcmics. Ihereas some evaluate a modeling methodology in

theoretical terms, the CPE analyst must ask questions of more direct

application: "Does it work?"; "How much will it cost?" CPE tends

to be a pragmatic discipline aimed at having a direct impact upon

the Automatic Data Processing (ADP) dollar's efficiency.

The relationship between ADP and CPE costs has fostered

growing commitment in government and industry to the development of

effective CPE tools. This cammitment has resulted in CPE's trans-

formation into a multimillion dollar industry and an important

computer science research discipline. Not many years ago, performance

measurement and analysis was a "seat of the pants" endeavor to all

but a small coterie of experts. Today, sophisticated packaged tools

exist which allow the trained technician to easily and accurately

model and evaluate many aspects of a computer system's performance.

Despite the eooncmic significance and considerable progress

which the performance evaluation cammunity has enjoyed during recent

years, CPE researchers have still had difficulty responding to the

challtnges posed by' nw system architectures and operating philos-

ophies: CPE tools are needed which can be used to develop accurate

deterministic models of parallel systems at a small cost relative to

the system cost. Current CPE tools do not adequately meet these

-- " " - S _



i I
I iv

challenges. For example, as this Thesis points out, the queueing

network model is a user-oriented, inexpensive modeling tool. Yet,

the basic assumptions of the model make it an inadequate tool for

studying many deterministic parallel systems. When these inadequacies

become important factors in a study, the CPE analyst must either

accept an approximate solution or use other more expensive and more

cumbersome modeling methods, such as discrete simulation.

Because of the importance of parallel system within the

ADP user community, there is a strong need for a cost-effective,

data-driven performance modeling methodology which can faithfully

represent deterministic behavior, process blocking, and the holding

of multiple resources by a single process. At least one study

[Browne, et. al., 1973] has shown that currently available tools are

inadequate due to their expense, difficulty of use, or inherent

modeling limitations; in some cases these limitations are significant

constraints.

The objective of this Thesis is to introduce a modeling

methodology which meets the needs described above. Wile it would

be naive, if not presumptuous, to imply an ultimate solution, the

methodology is demonstrated to be useful in analyzing the perform-

ance of a sophisticated disk subsystem that can only be approx-

imated by queueing networks. The capabilities of the model

demonstrated by this example problem seem to indicate that the

Time-Extended Petri Net (TEPN) offers a fresh and useful tool for

cost-effective CPE.

I



Iv

Acknowledgements

haeprovided ideas, friendship and encouragement, and who have

cnclusny smyde tThesi ca sile a f Iwto mnio l

svrlpages. However, there are a few individuals who, because

acknowledgement.

D.J. C. Browne provided the original idea for this
resarc, wrked closely with me while the research was in progress,
and hendisplayed laudable patience in the interim between the
conlusonof the research and the completion of this Thesis.

Dr.Bronewas more than an excellent Thesis advisor. Since we

firt ethe has been an encourager, a motivator, a friend and a

vaudcolleague.

Dr. J. L. Peterson provided guidance not only in the

developmient of ideas related to Petri Nets, but also in the

difficult task of presenting the research in a concise, under-

standable form. In every respect, he has been an ideal thesis

advisor. His guidance has always been helpful and available; his

genuine interest and support have been a constant encouragement.

William 'Bill" Berlin, my brother, also deserves special

credit for his major role in this Thesis. Bill was particularly



vi

helpful in developing the programing design specifications for

a TEPN implementation and is the veteran of several very late night

sessions required to put the Thesis together.

4 Behind every thesis there are always those who help with

typing, editing, and the other administrative functions necessary

for any large project. This Thesis is no exception; indeed, the

aimount of help that friends so willingly offered as the due date

drew near was nothing short of incredible and was a clear demronstra-

Lion of Oiristian love and coimmitment. Altogether, there were twentyI people who devoted specific time to the finalization of the Thesis.

The eight typists who participated in the project aver the last year

are all mentioned on the last page of this Thesis (at the bottom of

the Vita page), so they will not be listed here. Needless to say,

they were mrost crucial to the success of the effort. They were all

efficient and patient and survived many hours of typing and retyping

with smiles and enthusiasm. The other twelve people deserving of

special recognition helped with the graphics in the Thesis, with

editing the drafts, and with delivering the Thesis drafts to myr

committee members in both Austin, Texas, and Boston, Massachusetts.

The graphics ware drawn by Jacqui Schultz and Daphne Wilcox. These

I two were then assisted by Miss Sylvia Payne and Susan Polombo in

preparation of the ompleted figures with labels, mkings, etc.

I Three friends, Blaine Dunn, Donald Gregory and Anne Ccmardin, provided

final editorial assistance in putting the final document together.



vii

Finally, four individuals, Cam Nelson, Francis Vitegliano, Enrico

Barbieri, and Sandra Youla, acted as couriers to insure timely

delivery of the documents in Boston and Austin.

Because of my in absentia status, I needed someone in

Austin who could handle all of the final administrative details

pursuant to graduation and thesis submission. The majority of the

credit for work goes to Mrs. Nancy Eatman, Dr. Browne's secretary.

Without a doubt, Nancy was the vital link throughout the "thesis

generation" process.

Finally, I wish to ackncledge the help of two others

who braved the Thesis from beginning to end and put up with me

while I was either working or planning to work: Trudi Berlin, my

sister, and Cathryn Goff, my close friend. Their support, inspira-

tion, and good humor made an invaluable contribution towards the

conpletion of this Thesis.

Brett Berlin

Arlington, VA

June, 1979

I
I
I
I



I
TABLE OF CONTENTS

PREFACE ........................ ..

CHAFTER
I. INTROUCION .. . . . . . . . . .

II. SURVEY OF CPE MODELING TECHNIQUES . . . . . . . .. . 4
Discrete Simulation Modeling . ... . ........ 4

Analytic Modeling ... . . . . . . ........ 8
Trace-Driven Modeling ... . . . . . . ....... 12

III. DESCRIPrION OF THE PETRI NET MODEL. . . . . . . . . . 15

Definition of the Petri Net .. .. . . . ... . . 16
Marked Petri Net Models. . . ... . ..... . 17
Interpreted PetriNet Models. . ... . ....... 19
Execution of a Petri Net Model .......... 19
The Petri Net as a CPE Tool . . ... . . . 20
Evaluation Networks . ................ 21

IV. TIE TIME-EXTENDED PETRI NET: BASIC CONCEPTS ..... .... 24
TEPN General Definition . . . . . ... . ...... 26

TEPN Place Definition ............... 28
TEPN Token Definition . ... . . . . . . . . . . 40
Marked TEPN Models .................. 42
TEPN Transition Definition .............. 44
Execution of the TEPN Model . . ... . . . . . . . . 50

V. THE TIME-EXITENDED PETRI NET: IMPLEMENTATION OF
THE TEPN MODELING SYSTE . ... . . . . . . . . . . . 52
Implementation Cbjectives ............... 52
System Design Overview. . ... . . . . . . . . . . . 53
TEPN System Specifications ..... ...... .. . 59

VI. A TEPN MODEL OF A DISK INPUT/OUTPUT SUBSYSTEM . . . . 84
Description of the Problem to be Modeled ....... 84
Difficulties Encountered %ben Modeling

the Disk Subsystem with the Queueing
Network Model . * . * . . 98

TEPN Model of the Disk Subsyste with Serial
Path Allocation , e . .e * ...... 100

TEPN Model of the Disk I O Subsyste with
Parallel Path Allocation. . ... . . .. ... . . 116

VII. SUMARY AND OCLUSIONS . . . . . . . . . . . . . . . 133

APPENDICES
A. Deccnposition of a TEPN Model into a Petri Net. . . . 134

BIBLIOGRAPHY. e........... o99e.......... * 139
VITA* e........@....*...... e........e.*. 143

viii



I
I
I

CHAPTER I

INTRODUCTION

This Thesis introduces the Time-Extended Petri Net (TEPN)

as a basis for ocmputer system performance modeling, and demon-

strates the TEPN's usefulness in modeling a specific ccmputer

system problem. We suggest from preliminary modeling results that

the TEPN model is extendable to more general application in the

performance evaluation of both system and algorithm architectures.

The TEPN model resulted from a project whose goal was to

define and implement a modeling system which would:

(1) represent the time-resolved behavior of a set of

deterministic interacting parallel processes;

(2) represent the holding of multiple resources; and,

(3) allow specification of models as data structures

rather than as programs. 1

$ en properly implemented, this system combines much of

the power and flexibility of programmed simulation models with the

ease of use of queueing models, resulting in a powerful and cost-

effective modeling tool.

Queueing models and System Program Graphs are examples of models
which are specified as data structures which may then be analyzed
by a pre-ocipiled program which merely "executes" the structure;
discrete language simulation models are specified by a oaiputer
program and the model itself must be COmPiled and validated as a
computer program as well as a nodel.I

I1



2

The TEPN is constructed fromi the general Petri net by

(1) associating type and information content with tokens;

(2) associating with each place a set of functions and

state information derived fram the tokens at that place; and,

(3) associating input and output templates with each

transition to govern the firing of a transition and flow of infor-

mation through the network.

The deterministic properties of the TEPN structure remain

unchanged fromi those of the general Petri net, if suitable

restrictions on the information content of tokens and the range of

the functions are made. This combination of Petri net prcperties

and the above extensions results in a model whose powr of repre-

sentation and mode of definition meet the goals stipulated above.

* Thesis organization

other than the work of Noe and Nutt (Noe and Nutt, 1972

and 19731, the author knows of no major documnented research into

using the Petri net as the basis for a CPE tool. However, the

I reader will be helped by a familiarity with the relationship of

the TEPN to other major CPE mo~del ing methods, and this background

information is presented in Chapter II.

J Chapter III supports the TEPN conceptual definition by

presenting mm'n basic definitions of the Petri net, upon which the



1

TEPN model is based and briefly describes other major research

concerned with adapting the Petri net as a CPE tool.

Chapters IV and V define and describe the basic concepts

and the implementation of the TEPN model, thereby presenting the

bulk of the "new" material contained in this Thesis. The reader

already familiar with Petri nets and other cmputer performance

evaluation (CPE) modeling methods may want to begin this Thesis

with these chapters.

Chapter VI illustrates the usefulness of the TEPN system

in analyzing the performance of a complex disk subsystem.

Chapter VII concludes the Thesis with observation con-

cerning the TEPN's future as a CPE tool and suggests scme directions

for future research.

I
I

1 ~'.



I

CHAPTER II

SURVEY OF CPE MDELING TSCMNIQUES

This chapter suverys the three major CPE modeling techniques

in documented use by the CPE community. We discuss first the discrete

simulation methodology, then analytic queueing network models, and

finally trace-driven models, Although none of these techniques employ

the Petri net, their understanding is fundamental to understanding

the objective behind the TEPN network.

Discrete Simulation Modeling

Discrete 2 M simulation involves the description

of a ccmputer system by a computer probram and the simulation of the

interactions within that system as they occur over a discrete time

interval.' The level of detail of the representation within a discrete

simulation model may vary from simulated interactions to a one-eto-one

mapping of actual system interactions depending upon the computer

language used and the problem's requirements. 2

Most discrete simulation languages were developed in the

1950's and 1960's as tools to study o:mplex processes and .syste

2 The kind of problem generally determines the required and/or

desired Ievel of model detail, as well as deciding whether the
model should be deterministic (i.e., no random variability) or
nondeterministic. For example, an analysis of the performance of
a new logic circuit old normally require a very detailed model;
a logic-circuit level model of a large multiprocessor system
would be neither feasible nor useful. Similarly, the logic circuit
analysis would probably require a deterministic model, whereas
random variability is an important part of most large system models.i



~'I

'5

design. One of the earliest and best-known simulation languages is

IBM's GPSS [Efron and Gorden, 1969]. This language is problem and

user centered; it has features which allow the user to describe the

flow of work through the processes which are to be simulated in a

flawchart-like format. Wile not used extensively for CPE, the GPSS

language is still very popular in many other areas of ccmputer-based

simulation.
3

The most significant special-purpose simulation language

for CPE is the Extendable CcTputer System Simulator (ECSS) [Nielson,

1969]. Developed by RAND Corporation to aid in studies of computer

hardware and software systems, ECSS is a superset of the SIMSCRIPT II

[Kiviat, et. al., 1969] programming language with several embedded

features uniquely required when modeling omputer systems. BCSS has

been and continues to be applied to large CPE problems, particularly

within the Federal Government.

Another type of specialized discrete simulation tool is

the packaged simulator, of which the Computer Assisted System Eval-

uator (CASE) (CASE Manual, 1962] is the most notable example. CASE

is a prefabricated model of an arbitrary computer system defined

at run time by the user. The input to the package consists of a

configuration description and a workload description, while the

3 CFE uses of GPSS and most other simulation languages (to simulate
computer system performance) cumprise a relatively wmall percentage
of all simulation applications, as evidenced by the papers contained
in the proceedings of the various simulation conferences (proceedings
of major simulation conferences are available from the Association
for Ccqmpting Machinery (ACM) and the Institute of Electronics and
Electrical Engineers (EEE)).

LoI



I

6

output is a series of reports on the performance of each part of the

system as a whole. The package contains intrinsic information

concerning the performance characteristics of each piece of "legal"

hardware, indexed by make, model number, and vendor. To cover the

software impacts upon system performance, CASE not only contains

standard factors relevant to the major operating systems it

"supports," but also allows the user to specify many parameters

which are normally part of the operating system-generation process.

Because of the detailed simulation intrinsic to a CASE simulation,

the package was used extensively for a number of years. %ile CASE

continues to be useful in many CPE studies, the extreme cmplexities

of systems with a high degree of parallelism have challenged the

validity of many results of CASE simulations of such systems.

Discrete simulation modeling's primary advantage is the

flexibility of the programming languages available as a medium for

building the models. With the proper choice of the host language,

one can build a comprehensive simulation model that faithfully repre-

sents virtually any system. Furthermore, since the size of a model

is only limited by the capability of a machine to handle large

programs, this technique may be used to model deterministic systems

(or nondeterministic systems) which might be too large to model

effectively by other techniques.

The major drawback of the discrete simulation language

model is its high cost, both in development and use. The

development costs are generally high for two reasons. First,



7

the simulation 1mdel itself represents a significant piece of sOft-

ware. Since software developm~ent is labor intensive, the cost-.- of

simply writing the programs tend to be high. Furthermore, if the

systems being simulated are comnplex then the program logic will also

be comnplex, making program debugging difficult. The second reason

for high developme~nt costs is the need for careful model verification

and validation, Even if the software is completely debugged, it is

often difficult to verify that the program faithfully evaluates the

model designed for the custom~er. There is no guarantee that the

model as designed is truly representative of the system being studied.

Therefore, before the model is used in a production mode, careful

validation is necessary to insure useful results. For a large system

model, this process can take several weeks, thereby driving costs

even higher. The final cost factor is the cost of production use.

Muile the comiputer resources required to run the model depend upon the

model's level of detail and size, even a small, high-level model can

require many central processer time units for each unit of simulated

time. For example, if an analyst needs to simulate ten minutes of

ozr~ter system time can the system being modeled and studied, a simula-

tion run may easily require five or six times that in CPU time alone.

Furthermo~re, since many simulation languages require very large run-

time systems, even a relatively small model may require a large

memory allocation - and correspondingly increased resource costs.

Despite the high costs involved, the capability of building

large deterministic models of computer system is almost unique



8

to the discrete simulation methodology. Thus, simulation models have

found wide application in almost every sector of the community of

large-scale computer users. ([MacDougall, 1970] is an excellent survey

paper discussing omputer system simulation in more detail than is

appropriate for this Thesis,. This paper also contains an extensive

annotated bibliography.). However, though used, discrete simulation

models are often too expensive for use in studying less expensive

systems, a fact which has resulted in the decreasing emphasis of

discrete simulation in favor of analytic queueing mo~zdels, with a

correspondg sacrifice in flexibility and determinism.

Analytic Modeling

Within the context of this paper, analytic model ing refers

to a technique in which the system being modeled is represented

by a mathematical, rather than a simulation, model. In this

approach, the analyst seeks to find a mapping to the interactions

generic from the system under study to a set of mathematical formulae

which can be analytically solved. A large numnber of techniques fall

into the analytic modeling category, including many methods used in

operations research, such as linear and integer programing, re-

gression analysis, and queueing network models. Brice [Brice, 1973]

discusses mathematical models in detail as they relate to CPE, and

the reader is referred to his work for more conceptual background.

In this thesis, however, the only analytical technique vhich will



I

9

be discussed is the queueing network model.

The queueing network modeling methodology was originally

developed within the operations research community as a means of

analyzing systems which display certain characteristics of random

variability. In 1963, Jackson [Jackson, 1963) discovered a

powerful technique for analytically solving queueing network models

which met certain criteria. These concepts were independently

discovered a few years later by Gordon and Newall (Gordon and Newall,

1967]. Between 1970 and 1976, researchers within the CPE community

extended the known concepts of the queueing network model and

developed what is now a powerful analytic technique for CPE. As a

result of these developments, both the research and industrial

calrmmities have been able to develop efficient, user-oriented

software packages for automated queueing network analysis, making

the queueing network model the most important CPE modeling technique
in use today.

The greatest advantage of the queueing network model is its

simplicity. The concepts are well-defined and may require minimal

training to apply them. User-oriented systems exist which can

run on most large omputer systems; and models of even large multi-

processor systems can be constructed, tested, and validated in a

very short time coqpared to the time required to model the same

system using discrete simulation. Also, since the solution is

analytic rather than experimental, queueing network models often

require less computer resources than other CPE methods might require

to obtain cumparable results. This inherent simplicity of theI
-= L. I .. ... ... -- . . .. , ... . . .. ... . , .. * - . *. --.- . z-.



10

queueing model network methodology has made queueing network

modeling by far the least expensive imdeling method discussed in

this thesis.

Despite the utility and simp~licity of the queueing network

model, the model is limited in three areas: (1) the mod~el is probabi-

listic in nature and unable to mo~del deterministic processes; (2) the

model cannot exactly represent certain types of problems inherent to

many parallel processes; and (3) the validity of the mo~del is depen-

dent upon the representation of the data used to generate the

probabilistic functions upon which the mo~del is based. The first

limitation causes two difficulties. First, there are some~ problems,

such as those dealing with logic design and hardware architecture

analysis, which require detailed, deterministic analysis. These

problemis are not easily solved using queueing networks. Secondly,

1 there are many CPE problems for which it would be desirable to build

a moKdel which cold be either deterministic or probabilistic, depen-

din upon the data available and the objectives of the analysis.

The second limitation area is caused by several inherent

characteristics of the queueing model pointed out by [Bromne, et al,

1973], who experienced difficulties when modeling a disk input/outpult

subsystem with the disk SEEK:REA/WRITE overlap feature. The

difficulties included: (1) queueing networks only appraocimate

the simultaneous holding of multiple resources (such as when both

a controller and a disk unit must be held by the same transaction,

IV



though not necessarily for the same period of time); (2) queueing

networks can only approximate problems encountered by process

blocking (such as might happen when a disk seek has been initiated

by a controller but is busy when the seek is complete, blocking

the original transaction from completion); and (3) queueing

networks are limited in capability to model condition-dependent

paths in which the conditions are dependent upon more than the

location in the network (this is a result of the dependance of

much of queueing network theory upon the memryless property of

Markovian systems.

The final area of limitation, that the validity of the

model is dependent upon the validity of the probabilistic functions

used, is common to all probabilistic systems. Sae problems have

been resolved by the discovery that some of the common functions

are relatively insensitive to inaccuracies in the data used

to determine functional parameters (such as the mean of an

exponential or negative exponential function). Wile few researchers

would claim that one could depend upon the results of a queueing

network model for exact accuracy, many experiments have shown that

a well-designed queueing network model can be assumed to be accurate

to within ten to fifteen percent, or better. Furthermore, by cam-

bining the results of queueing network analysis which such statis-

tical techniques as analysis of variance and confidence intervals,

CPE practitioners have shown the queueing network model to be a

useful tool for those problems which it is capable of modeling.

__ _ _ _

.. . . I



12

Trace-Driven Modeling

Trace-driven modeling is "a technique which comibines

measuremient and simulation for the purpose of evaluating and pre-

dicting the performance of systems" [Sherman, 1972]. In particular,

a trace-driven model is one which may be driven by either actual

workload data or specially-massaged trace data from~ the operational

history of the system under study. For example, a queueing model

could be designed as a trace-driven model if, instead of having

the workload represented by a stochastic process, the input to the

network were fed directly fromn a system log of actual transaction

times. Such a modeling tool has obvious application in a variety

of performance analysis problems, particularly in the analysis of

system algorithms or hardware configurations.

The most significant work in trace-driven models was that

of Anderson [Anderson, 1974], Sherman [Sherman, 1972], and Browne,

[Sherman and Browne, 1973; Sherman, Howard and Browne, 1975] between

1969 and 1974 at the University of Texas at Austin. The dissertations

of Anderson and Sherman are devoted to the developmnent and use of

the trace-driven modeling concepts. Sherman demonstrated the useful-

ness of trace-driven modeling by building and using a trace-driven
FURRAN simulation model of the University of Texas' T2 CDC 6600

operating system. Anderson developed a unified trace-driven modeling

methodology based upon the System Program Graph (SPG) - The SPG

is a graph-based representation technique which not only allows

the workload to drive the model directly, but also allowvs the model



13

itself to be represented in terms of a data structure rather than

a computer program,.

Both Anderson and Sherman demonstrated the primary advan-

tage of the trace-driven technique: the results are not subject

to either the sm~oothing or randomi behavior effects of using

stochastic methods since the inputs to the model are deterministic,

rather than stochastic. Since stochastic processes are built to

represent "average" behavior, these processes often omplicate the

investigation of systems in which small pertubations are important

to system performance evaluation. The trace-driven mod~el ov.ercomies

most of these difficulties by using deterministic data.

A second advantage of trace-driven zmdeling is that the

level of detail of the simulation results may be controlled by

varying the detail of the input data, rather than by redesigning and

reprogramming the model, which would be required by simulation or

queueing nebwork models.

Finally, Sherman observed that the trace-driven model

results generally displayed high accuracy which could often be vali-

dated by straightforward means. This accuracy resulted in absolute,

rather than relative, measures of performance. In other words,

analysis of two algorithms could yield the absolute result that

algorithm A was, say, ten percent faster than algorithm B (for

the data given), rather than the relative result that algorithm A

was simply better than algorithm B..



I

14

Despite these and other advantages, trace-driven modeling

has had only limited practical application. One key reason is that

the usefulness of the technique depends completely upon the accuracy

of the trace data and the quality of the model that the trace data

drives. Accuracy of trace data, of course, is a problem not unique

to this methodology, since both discrete simulations and analytic

models are dependent upon the same data. The problem tends to be

more significant, however, with a trace-driven model because the

trace-driven model tends to be more sensitive to minor pertubations

in the data, whereas the smioothing effect of stochastic processes

tends to eliminate the impact of these pertubations for other meth-

ods. The quality of the model that the trace data is driving is not

only a function of correct model architecture, but it is primarily

a function of the modeling capabilities of the model itself. For

example, if the model used is a queueing network model, the trace-

driven nature of the approach does not absolve the model from all of

the limitations found with queueing network models.

Like the queueing model, the SPG method is limited in its

capability to model deterministic proesses. Furthermore, the SPG

model of a complex system may easily become unwieldy because of

the number of nodes included. These and other waknesses have

resulted in very little application of the SPG or other similar

trace-driven modeling methods, although Anderson's and Sherman's

wrk have helped to lay an effective groundwork for the

development of the TEPN structure.

- - ________ -



CHAPTER III

DESCRIPTION OF IE PETRI NET MDDEL

The Petri net is an abstract model of information flow

first proposed by Carl Petri in Germany, in 1964 (Petri, 1964].

The Petri net was first applied to the study of computer system_=

by Holt and Conmoner [Holt, et.al., 1968; Commoner, eta.., 1971],

in 1968, and subsequently enjoyed considerable interest within the

Computation Structures Group of Project MAC, from 1968 to 1975.

Since 1968, Petri nets have been studied and used both in university

and industrial environments to study and design circuits, algorithms,

systems, and other processes. In 1977, this research was the subject

of a survey paper published in the ACM Computing Surveys (Peterson,

1977), to which the reader is referred for more background information.

Definition of the Petri Net

Figure 3-1 is a graphical representation of a Petri net.

1] P3 '

Figure 3-1 Example Petri Net( 15



1

16

Informally, the Petri net is a graph structure consisting of two

types of nodes, places (pictured by circles) and transitions (pic-

tured by vertical bars), connected by directed arcs. Definition 3-1

formalizes the Petri net concepts pictured in Figure 3-1.

Definition 3-1. Petri Net

A Petri net is defined as a bipartite, directed graph

described by the four-tuple, C = (P,T,I,O), where,

P = {p, 1 ... ,pn!, a set of places, n,-O;

T = ft,.',tm, a set of transitions, mzO;

I is the transition input function, I:T-2
P

0 is the transition output function, O:T-2 P; and,

sets P and T are disjoint.

In this definition, the connecting arcs are defined by the transition

input and output functions, since, for each transition, the input

function will yield the set of places connected by arcs directed into

the transition, while the output function yields the set of places

cxnnected to the transition by arcs directed away frcm the transition.

Using this definition, the structure of the Petri net of

Figure 3-1 would be specified as follows:

PNET(P,T,I,O), where,

j P fPl,P2,P3,P4,P5,P6 T = [TI,T2,T3,T47

l(T1) - {P1,P21 O(T1) - (P33
I(T2) - (P3,P4 0(T2) - (P51
I(T3) - (P5 O(T3) = IP61
I(T4) - fP6J O(T4) - (p2,P41I



17

At this point, it is important to understand that the places and

transitions of a Petri net are primiitive objects, with no associated

attributes, functions, or other special meaning.

Marked Petri Net Mo~dels

The Petri net structure may be used to represent the struc-

ture of inform~ation or execution flaw in a process, but any study of

the dynamic or state properties of a system requires the intro-

duction of another entity, the token,

A token is a dimensionless, uninterpreted object which may

"reside" at any place within the network. The number of tokens at a

given place is referred to as the marking, or state, of that place,

and the vector of markings of all places defines the marking, or

state, of the entire network.

Figure 3-2, below, is a marked Petri net, with tokens

being represented by dots within the marked places. This marking

would be specified by the folloing vector:

M = (0, 1, 0, 1, 0, 0)

where,

M.=the number of tokens currently residing at place i.



1P

Figure 3-2 Marked Petri Net

Disk floqest arrives;
waits for ontroller

T1 P

F~gure 3-3 Inierproeess t e

With Transition TI Enabled

I1



19

Interpreted Petri Net Mozdels

If a Petri net is used1 to mo~del a specific system, it is

necessary to assign a name or interpretation to each node of the

network, resulting in an interpreted Petri Net. This interpretation

then ascribes meaning not only to the nodes of the network but to

the network states, or markings. The net of Figure 3-2 could, for

example, be interpreted so as to represent a simple disk subsystem.

With this interpretation, shown on Figure 3-3, the marking above

might represent the state in which (a) there is one pending disk

requests and, (b) both a disk unit and a controller are available. 4

Execution of the Petri Nlet Mozdel

W~en all of the places comprising a transition's input set

have a non-zero marking, the transition is said to becone enabled,

ready to fire, or "happen.*" If a disk request "arrives" at place P1

(from Figure 3-3), transition Ti will become enabled, and a firing

occurs.

A firing occurs deterministically when the specified tran-

sition is enabled and involves the following firing rule: one

token is removed from each of the input places and a new token is

4 Rth this initial marking the Petri net would model a single-
controller, single-disk subsystem. A layer subsystem couald be
modeled by the same structure by adding more controller or disk
tokens to the initial marking.



20

created and placed at each output place. Figure 3-4 illustrates the

results firing transition TI for the Petri net of Figure 3-3,

after a new token has been introduced into the net at place P1.

Disk equest arrives;
wiurs for e NrTroller

T PControlle allocated;

Washngto oonire th3-t4 a f h Petri netAte T air s ato

Sfor performance modeling. By building a nxodel of a CDC 640operating

system and using it to study some basic performance characteristics,

71P

J Noe illustrated that the Petri net has several attractive
c pro erties that make it a potentially tool powerful modeling, The

most imortant of these is the inherently deterministic nature of
the prodel characteristic gives the m odel representational acuray

not possessed by stochastic models (such as the queueing network1

- !.



21

model). A second property is the Petri net's ability to represent

a system in varying degrees of detail within the same net.

This characteristic affords considerable modeling flexibility without

a corresponding decrease in representational accuracy.

Despite its advantages over other CPE tools, the Petri net

has yet to becme a widely applicable CPE instrment. The primary

reason is that the model lacks a crucial attribute required in

computer performance analysis: an intrinsic time-resolution mech-

anism,. There is no concept of measurable time for a Petri net

execution sequence, and so it is impossible to measure such things as

throughput rates and response times. In addition to the time

measurement problems, there is no mechanism to naturally represent

the flowj of specific information across transitions, since all

tokens created at firing time are totally independent of any other

tokens already in the system. While this is not an insurmountable

problem, it does make the modeling of processes much more difficult,

particularly when dealing with multiple conditional paths.

The Evaluation Net Model (E-Net..)

Although the Petri Net, pe e did not prove a methodol-

ogy sufficiently powerful for modeling the performance of computer

j systems, one of Noe' s doctoral students, Gary Nutt [Noe and Nutt,

1972 and 1973], used the Petri net concepts to develop a new structure

which would retain positive properties of the Petri net while over-



I
22

caning some of its limitations. The result was the Evaluation Net,

or E-Net. This structure changed several of the basic concepts of

the Petri net and added quite a few new features, resulting in a

more complex modeling tool. Among the changes included were:

(1) The concept of time was implemented by "delaying" tokens

at the transitions. The amount of time was determined by a "transi-

tion procedure" and controlled by a global timing mechanism.

(2) In addition to determining firing delays, the transition

procedures manipulated tokens and certain global variables.

(3) A set of global "environment variables" was specified

and used in conjunction with transition procedures, "resolution

procedures," and other functions.

(4) Conflicts between paths were resolved using special

resolution procedures activated at transition firing time.

(5) Resolution procedures were also associated with a

special class of nodes utilized to aid in resolving ambigu ties

throughout the network. These nodes contained resolution infor-

mation defined by the user of the system.

(6) Sane tokens were made global. This change, though quite

significant, was required by the implementation of time in the

transitions instead of the places.

The primary importance of the E-Net is that it was the

first major attempt at developing a Petri-net-based modeling system

for CPE applications. While the E-Net did not meet with wide

acceptance as a usable tool, it did show that Petri net properties



I

23

could be at least partially preserved, and that a simpler Petri-net-

based structure might be useful. The primary drawback of the

system was its tremendous complexity, which made even small mod-

eling efforts a major production to all but the true expert. 7his

complexity is contrasted with modeling with queueing networks,

which requires a relatively small amount of expertise to construct

a reasonable and useful model.

Even with its rather cumbersome ccmplexity, however,

Nutt's work represented an effective pioneer effort to the goal of

developing and implementing a Petri-net-based CPE model.

I

I
1



CHAPTER IV

THE TIME-EXTEN[ED PETRI NET: BASIC QONCEPTS

The Time-Ebctended Petri Net (TEPN) is a modeling structure

based upon the Petri net and designed to meet the goals expressed

earlier in this Thesis. he advantages of the Petri net, in partic-

ular those of inherent parallelism and determinism, have been re-

tained, while the representational capabilities have been extended

by implementing places, transitions, and tokens in more elaborate

forms.

The Petri net has been extended to al low for the natural

representation of time-resolved behavior (changes to the token and

place objects) and state-dependent execution paths (changes to

the token and transition objects). The TEPN places and transitions

are given attributes Which allow the direct definition of perfor-

mance metrics as an inherent characteristic of a model. Finally,

the TEPN token is defined as a messenger for activating the places

and transitions.

Both the definition and placement of all TEPN attributes

are predicated upon a CPE rather than a theoretical view of the

Petri net. This view defines an inherent interpretation in which places

represent processes and queues, while transitions remain as synchro-

nization primitives that act as state transition arcs. Transitions

never represent either processes or queues, nor are they ever part of

the state definition of a particular TEPN model. Because of this inter-

24

Y'



P7

25

pretation, time resolution mechanisms are Tiplemented comnpletely within

the place. 1 his includes a place clock, internal place queues, and a

token delay time function. In support of the token delay time function

within the place, tokens have been extended to allow then to carry

external parameters, which can be used by the place token delay tume

function to canpute internal queueing delays. Similarly, transitions

have been equipped with special token templates to insure that when

tokens are created at transition firing time the tokens will contain

values for the parameters required to comipute the token delay time

within the place.

$ Implementation of state dependent execution paths requires

a token routing mechanism capable of resolving state conditions upon

which the token's path is dependent. Since this mechanism affects

the order of state transitions, it is imnplemented in the form of an

extension to the Petri net transition called a firing temtplate. Along

with a corresponding extension to the Petri net token, the t attri-

bute, the firing template allows for deterministic token routing and

provides a mechanism~ to tmdel the effects of process blocking.

Finally, the token type attrite provides an effective

mechanism~ for resolving the workload of systems into components or

activities. While this does not inherently increase the modeling

powr of the TEPN, it does afford the practical advantage of being

able to collapse certain very large etri net models which do not

employ token types into highly ccznpact modlels with multiple token



26

types. An example of this czapction capability is illustrated in

the example TERN model of chapter six.

Throughout this research, the author has taken great care

to retain the modularity and subnetwork independence characteristic

of the Petri net. Extensions which create global environments (such

as a global synchronizing clock, global tokens, etc.) wre avoided,

as were modifications which precluded reducibility of the TEPN into

a Petri net, in the default case. Despite these efforts the TEPN

structure has neither the simplicity nor the elegance of the Petri

net. However, it does appear to be a powerful model which remains

straightforward enough to be readily usable.

TEPN General Definition

The basic definition of the TEPN model, definition 4-1
below, is structurally equivalent to that of the Petri net, defi-

nition 3-1, in chapter three. The Petri net places and transitions

are simple primitives with mo dimensions or attributes. Similarly,

the token is only a "marker," with no "meaning" of its own. The

TEPN structure has the same building blocks but they are no longer
simple primitives. Rather, they are potentially conplex structures

with well-defined attributes. An analogous situation might be found

in the structure of chemical molecules. All molecules are built of

-- -.. ....



IF

27

a basic building block, the atom. For quite a few years, the atom

was thought of as a primitive--i.e., it could not be broken down

further. Then scientists discovered subatomic particles which are

now known to be building blocks for the atom. The new atomic model

is able to explain a larger number of phenomena. But, in cases

where the subatomic particles do not make any difference, the simpler

model is still used and does not compromise the integrity of

the more complex structural representation.

In like manner, the TEPN model is able to represent many

system interactions which could not be modeled with the Petri net.

Ren the additional modeling power of the TEPN is unnecessary, how-

ever, the TEPN model may be treated as equivalent to the simpler

Petri net by allowing the more complex TEPN places, transitions, and

tokens to default to their simplest form.

Definition 4.1. Time-Extended Petri Net

A Time-Extended Petri Net (TEPN) is a modeling structure

defined by the four-tuple, C = (P,T,I,O), where,

P = (Pl,...PnI, a set of places, n-O;

T = , td, a set of transitions, mrO;

I is the transition input function, I:T-2 P

0 is the transition output function, O:T-2 P

sets P and T are disjoint.

The next three sections define each of the TEPN building

blocks: The TEPN place, transition, and token.

K



28

TEPN Place Definition

The state of both the Petri net and the TEPN is determined

by the states of the places within the particular net. The tran-

sition, on the other hand, is a network element that controls

state changes across the net. In this section, I discuss the

attributes of the TEPN place. These attributes, all extensions frmn

the primitive place concept found in a Petri net, heavily influence

the domain of problems to which the TEPN may be successfully applied,

while many of the extensions to the transition affect the solution

net's structure.

There are two project goals which led to the major exten-

sions to the Place definition. The first relates to the need for a

modeling basis capable of representing time-resolved behavior of

networks of processes. The Petri net models structures and struc-

tural relationships. With the Petri net, one can study paths of

both data flow and control flow through systems of considerable

complexity; the Petri net also offers a precise notation for

describing the syntax of such system problems. A Petri net cannot,

however, describe the time-resolved behavior of a real system.

modeling such problems necessitates that the model incorporate the

concept of time and timed performance..

The second project goal is developing a modeling structure

which provides a natural, but powerful mechanism for defining and

studying various performance metrics within the model itself. Since

virtually all performance metrics are defined in terms of the state



I

29

history of the model, this goal involves the capture of state history

information for each of the TEPN places.

The TEPN place conceptually carbines the concepts of

queues and servers. Functionally, the place receives tokens from

input transitions, "stores" the tokens for some elapsed interval,

and, when an appropriate output transition is enabled and fires, it

"emits" the same token to the output transition. In a CPE model,

places might be abstractions of the resources or processes which

do not create or destroy tokens; they act as a "way station" for

tokens between token creation (at the firing of the input transition)

and token destruction (at the firing of the output transition).

This definition underscores three characteristics unique to the

place. These three are:

(1) Tokens only reside at places, with the result that the

state of a net may be defined in terms of the states of places

within the net;

(2) The place conserves 5 tokens and could, if ao implemented,

allow tokens to retain a unique identity; and

(3) %bile there is no concept of time intrinsic to the Petri

net, there is definitely a concept of "waiting," in that a token

resides at a place until it is moved by the firing of a transition.

5Although places conserve tokens - i.e., tokens are neither lost
nor added - this should not be confused with network-wide token
conservation as discussed in Petri net literature [Lien, 1976]
and [Pererson, 1977].

!
- a., 1



30

These characteristics can be combined with a time mecha-

nismn to provide a well-formed basis for modeling time-resolved

behavior. The TERP place has been extended from the Petri net place

to include an internal clock and other attributes to effectively

support such a mechanism. In defining these attributes, we start

with the TEPN Place definition.

Definition 4.2 TEPN Place

Tie TEPN Place is a composite object which receives tokens from
adjacent transition nodes and emits the same tokens to adjacent
output transition nodes. Each place is internally defined by
the following attributes:

(1) Place Clock, a non-negative, asynchronous
clock;

(2) Place Active Queue (PAQ), a queue of tokens waiting
to become enabled;

(3) Place Enabled Queue (PEQ), a queue of tokens waiting
to leave the place;

(4) a set of Place Performance Functions.

The four place attributes represent what the author

believes to be the minimal extensions necessary to give the TEPN

place the flexibility required for effectively modeling parallel

systems. As such, each of these attributes is directly linked to

the objectives discussed earlier in this section. The clock pro-

vides tine-resolution without which most of the performance metrics

would lose meaning. The two queues provide a concept of ordering

as well as potential for delays (service times) and internal syn-

chronization (including priority schemes). Finally, the performance

functions provide a natural, intrinsic mapping from the place state

I



31

history to the set of integers. The concept of the "state" of a

place and the place state history will be discussed further below.

There are several methods for defining each of the four

place attributes. For the purpose of this Thesis, it will be suffi-

cient to present the subattributes which form the most primitive

characteristics of the clock, queues, and functions mentioned above.

In the next chapter we discuss the implementation of the place in

terms of the functions which must be programed in the implementation.

Each of the place attributes is said, for the purposes of

this Thesis, to be specified as one of two types of subattributes:

configuration attributes and state attributes. Configuration at-

tributes are those which determine the place's internal structure

and operational characteristics. If these attributes are not

ascribed meaning then the place would be undefined. An example of

such an attribute would be the queueing discipline attribute of a

queue. A queue cannot be defined or used unless a queueing disci-

pline is associated with it. State attributes, on the other hand,

are those which directly affect the place's state when they change

as a result of execution of a network and movement of tokens through

the place. The current value of the place clock, for example, would

be a state attribute.

TEPN Place Clock

This clock is defined as a simple interval clock which is

undefined for negative or non-integer values. It is decreasing in

I
I



32

that whenever it has a positive value associated with it it auto-

matically and asynchronously decrements by units until the value

reaches zero. The clock has no configuration subattributes, and

only one state attribute, called TIME.

Definition 4.3 State of a TEPN Place Clock

The state of a TEPN place clock is defined as the current non-

negative value of the clock. This value is referred to as the

TIME, and is functionally denoted TIME(P), where P references

the place whose clock is being observed.

TEPN Place Active Queue and Enabled Queue

A queue is an ordered list defined by an ordering function

(queueing discipline) and a function that determines service time.

A queue may be further defined to include a maximun size; if it has

this attribute and the maximum size is finite, the queue is called a

bounded queue. The queues that define each place are queues of tokens

which are received by the place during execution of a network. The

first queue, the Place Active Queue (PAQ), accepts tokens immediately

upon their entry into the place. The service time within the queue

is determined by a function called the Token Delay Time Mapping

(TDTM), which maps the attributes of the token into the set of

integers.

I -----



33

Once the token has left PAQ it enters the Place

Enabled Queue (PEQ). This queue has no service time function; the

"service time" is determined by the state of the adjacent output

transitions. When one of these transitions is ready to accept

a token, the PEQ will release a token (if one is available).

Although the PEQ does not have an internally defined service time

function, it may have a queueing discipline. In this case, certain

tokens will be considered to be receiving service while others

will be considered to be waiting, although the service time will

be indeterminate, since it depends upon the length of time the

"enabled" token must wait for an output transition to accept the

token.

Definition 4.4 Place Active Queue

The Place Active Queue (PAQ) of place P is the queue of tokens

residing within place P which will not be available to leave P

prior to a determinate minimum sequence of place clock

state transitions. The PAQ configuration is defined by the

following attributes:

(I) PAQ gueueing discipline,

(2) PAQ Bound, and,

(3) PAQ Token Delay Time Mapping (TDTM).

Definition 4.5 Place Enabled Queue

The Place Enabled Queue (PEQ) of place P is the queue of

M
.... .. .- , _. i



I
34

tokens that are residing within place P and which are not in

the PAQ. The configuration of the PEQ is specified by two

attributes:

(1) PEQ Queueing Discipline, and,

(2) PEQ Bound,

These two definitions clarify both the functions of and the

conceptual differences between the two queues. The first queue

deals with tokens waiting because of internal delays caused by the

application of the PAQ TDY4; the second, the PEQ, holds the tokens

which are delayed due to external factors. It is important to

note at this point that the place not only has no control upon

these factors, but also has no visibility on them. The expected

wait time within the PEQ, therefore, is always indeterminate from

the viewpoint of the particular place.

The configuration subattributes of the two place queues

are described further below. Except where noted, the corresponding

subattributes for both the PAQ and PEQ are conceptually identical,

although in implementation they have no a priori relationship.

FAQ and PEQ Queueing Discipline. The ordering function,

or queueing discipline associated with each of the place queues may

be either a "standard" queueing discipline, sach as first-ccme-

first-served (FCFS) or infinite processor (IP), or it may be a

specially defined function. Regardless of how it works, however,

the queueing discipline determines both how many tokens may be

1
1

* - -. Y-



35

"active" or "enabled" at any given time, and the degree of depen-

dence or independence of tokens passing through the same place,

One result of this is that the queues provide a natural partitioning

of the place's resident tokens into four sets, or states. For

purposes of this Thesis, these four states shall be defined as

follows:

(1) WAIT: token in PAQ, not being served

(2) ACTIVE: token in PAQ, being served

(3) ENABLED-BLOCKED: token in PEQ, not available to

leave place

(4) ENABLED-READY: token in PEQ, available to leave

place,.

Queue Bound. Each of the queues may be bounded by sane

finite value, This value will determ~ine the maximum size to which

the entire queue may ever grow. The queues may be separately or

jointly bounded. A joint bound treats the entire place as a large

queue by stating that only a limited number of tokens may reside

within a place at any given time. If a place is only assigned a

joint bound then there is no restriction upon howi the tokens will

be distributed among the tw~o queues. In addition to or in place of

an explicit joint bound, each queue may be separately bounded. If

there is no explicit joint bound but both queues are bounded then

the place is said to have an implicit bound equal to the sumi of the

individual queue bounds. If there is an implicit or explicit joint



36

bound then the place is said to be bounded, as expressed by Defi-

nition 4.6 below.

Definition 4.6 Bounded Place

A place, P, is said to be n-bounded if the PAQ and PEQ of

P are jointly bounded by n. If n is the smallest integer

such that P is still n-bounded, then n is said to be the

minimal bound of P.

The concept of a finitely bounded place allows modeling of

systems which have severe restrictions upon the "processing" capa-

bility of specific nodes, or which display performance characteris-

tics very sensitive to increased "workload." However, it should be

noted that while no real systems are in fact infinite servers there

are systems where it is useful to determine the "natural" steady

state conditions that would exist if limits did not exist. There-

fore, there are many cases in which the places would be unbounded.

Token Delay Time Mapping (MTDM). Each Place Active Queue

has a Token Delay Tim Mapping (TDM) associated with it. This

attribute defines a mapping from the domain of tokens into the

range of non-negative integers, and determines the minimum internal

time delay required before the token may become enabled and enter the

Place Enabled Queue. The passing of this time delay is indicated by

camensurate changes in the state of the place clock. This delay

does not include any wait time experienced prior to the application

I



37

of the function to the token. For example, if the queueing

discipline is FCS (first-ocme-first-served), then tokens would

have to wait in line until the PAQ "server" was ready. Then

the delay TDTM would be applied to the token and the token would

reside within the "server" for exactly the amount of delay resulting

from the application of the token function to the token, after which

it would be released to the PEQ.

Definition 4.7 Place Token Delay Time Mapping

The Place Token Delay Time Mapping (TEIM) is a transformation

which maps the dcmain of tokens into the range of non-negative

integers.

The State of the PAQ and PEQ. In addition to its

configuration subattributes, each queue has an implicit set of

state subattributes which define the state of the queue and help

to define the state of the place. Definitions 4.8 and 4.9 define

these state attribites.

Definition 4.8 State of the Place Active Queue

The state of the place active queue is defined by the following

state attributes:

(1) The sequence of tokens within the queue in the WAIT

state, and

(2) The sequence of tokens within the queue in the ACTIVE

state.

I



38

Definition 4.9 State of the Place Enabled Queue

The state of the place enabled queue is defined by the

following state attributes:

(1) The sequence of tokens in the ENABLED-BLOCKED

state, and

(2) The sequence of tokens in the ENABLED-READY state.

TEPN Place Performance Functions

7he TEPN Place extensions discussed above provide for a

well-defined and flexible ability to model time-resolved behavior

without altering the basic determinism and subnet independence

of the Petri net. The final extension to the Petri net Place is a

mechanism to introduce the definition of performance metrics into

the modeling structure itself. This aspect of the TEPN is somewhat

unique from most modeling methods in that it merges the

modeling tools with the data analysis tools, thus simplifying the

CPE modeling process. This mechanism also aids the analyst

in validating the model by providing a reliable link between

the model and the mdel's apparent results. In other words, by

allowing for predefined, well-tested internal performance

metrics, the TEPN structure definition may eliminate many of the

problems encountered when the output has not been sufficiently vali-

dated to assure agreement with internal results.

1



39

Definition 4.10 Place Performance Function

A Place Performance Function is a mapping from

the sequence of execution states of the place over

a specified time interval into the set of real numbers.

Another way to state definition 4.10 is to say

that a performance function is a mapping from the results of the

execution of a TEPN model into a real nunber which represents some

standard (or, perhaps, non-standard) performance metric such as

throughput, average wait time, etc. These metrics are all results

of some "summarization" operation taking into account every state

that the place has experienced during the specified time interval.

Definition 4.11 TEPN Place Execution State

The TEPN Place Execution State is a function of time and

is defined as a vector containing the values of all state

subattributes of the Place Clock, the Place Active Queue, and

the Place Enabled Queue.

By combining Definitions 4.10 and 4.11, above, we see that the domain

of each place performance function is a sequence of vectors con-

taiing the values of state subattributes over a specified time

interval. For a given model over a given time interval this

sequence is the model's state history.

i
!

_________Ii



Fi
I

40

Definition 4.12 State History

The state history of a TEPN place is the sequence

of execution state vector values over a specified time

interval. The state history for place P over the interval

(tl, t2) is designated Sp(tl,t2).

We may ncw give an alternate definition for a performance function.

Definition 4.13 Place Performance Function (alternate definition)

A Place Performance Function is a mapping of the place

state history into the set of real numbers. :n functional

notation,

PPF = f( S p(tl,t2)

where (tl,t2) is the time interval over which the performance

is being measured.

One should note that at least for the conceptual definition

the internal specifications of any particular performance function

are to be avoided., Part of the significance of this feature in the

TEPN definition lies in the fact that the functions are defined

as part of the construction of each model.

TEPN Token Definition

Like the TEPN places, the TEPN token is a cxoposite

data object. Definition 4.14 defines the TEPN token; the bdo token

I
I



41

attributes are then discussed in more detail below.

Definition 4.14 TEPN Token

The TEPN token is a composite object defined by the following

attributes:

(1) the token type; and

(2) the token functional attribute set.

Token Type

The objective of the token type is to provide the token

with an identifier that can be used to control the token's execution

flow path. This attribute is used in conjunction with the transition

firing template and is determined at token generation time (during

the firing of a transition).

Token Functional Attribute Set (FAS)

At token generation time, each token is built to include

a set of intrinsic functions which return integer or boolean values.

These functions return values which are used by the place token

delay time function to determine the "service time" required of the

token upon arrival at the Place Active Queue (PAQ). Within the

TEPN's conceptual definition the exact nature of these functions are

not defined, since they are arbitrary in nature and are uniquely

defined for each token created and are incorporated within the

transition's token template. Definition 4.15 does, however,

describe the concept in more formal terms.



42

Definition 4.15 Token Function Attribute Set (FAS)

The token function attribute set is a set of single-valued,

integer or boolean functions of the form (FNAME, value), where

"FNAME" is the function name and "value" is the current

functional integer or boolean value.

Marked TEPN Models

A TERP is said to be marked when one or more of the TEPN

places belonging to the network have one or more resident tokens.

Similar to the Petri net, the marking of a TEPN determines most of

the state attributes of a given network. Unlike the Petri net, how-

ever, in which the marking is simply a count of the number of tokens

at each place, the TEPN marking may be expressed not only in terms

of token counts, but also in terms of specific tokens and their

current attributes. Because of this potential for added complexity,

this Thesis defines two markings, the internal marking and the

external marking. As their names might suggest, the criteria used

in developing the definitions of each of these marking concepts was

the "view" of the internal versus external "observers" of each

place and of the network as a whole.

Definition 4.16 defines the external marking of a TEPN.

This definition is equivalent to the definition of a Petri net

I
I



43

marking for a Petri net that contains typed tokens6 Although

the information required to derive the external marking exists

as a subset of any more comprehensive inventory of the TEPN's

resident tokens, a separately defined external marking simplifies

situations where more omplex information would not be required.

Furthermore, it is important to recognize that the external marking

is the marking which could be observed via a "global" view, since

no place or token (or transition) attributes are global by

definition.

Definition 4.16 TEPN External Marking

The External Marking of a given TEPN, N, is a K-vector,

where k is the number of places in the TEPN, and the ith

element of the vector is an m-vector in which m is the

integer count of token types currently defined within place

Pi a unique place within TEPN, N, and the jth element of the

vector is the count of Pi resident tokens of token type TYj.

The internal marking is described by the sets of actual

tokens residing at each place. This is the view from within the

6 Peterson (Peterson, 1979] and others discuss Petri nets with
Wcolored", or typed tokens, as a manner of simplifying Petri nets.
As Peterson points out, any Petri net with typed tokens, of a finite
number of types, can be shown theretically equivalent to some Petri net
without typed tokens. This equivalence does not necessarily hold
up within the TEPN environment, except in the default case (in which

I the TPN becomes a Petri net).

Ier



44

place itself. The internal marking includes not only the number

and types of tokens within each place, but the current state of

each token and, in some cases, the function attribute values for

specific tokens within specified places. Definition 4.17 defines

this marking concept. Note that the marking is characterized by sets,

and not token sequences or queues. The ordering of tokens within

each place queue is not a factor in the marking although this ordering

is important to the place state.

Definition 4.17 TEPN Internal Marking

The Internal Marking of a given TEPN, N, is a (1 x k) vector,

I where k is the number of places in the TEPN, and the ith element

of the vector is a partition of the set of tokens residing with-

in place Pi, of TEPN N, expressed as an ordered four-tuple,

=TSw  TS a TS , TSe ), where,Mi w a e r

T!w = set of place tokens in WAIT state,

TS = set of place tokens in ACTIVE state,
a

TSe= set of place tokens in ENABLED-BLOCKED state, and

Tse= set of place tokens in ENABLED-READY state.

Mi is called the Local Internal Marking for place P

TEPN Transition Definition

Like its Petri net counterpart, the TEPN transition is a

synchronization primitive which controls the flow of tokens across

a TEPN model. Similar to the Petri net transition (and unlike the

1



45

TEPN place), TEPN transitions neither hold tokens nor record

the passage of time. All actions which happen at a transition are

considered to happen instantaneously; in this sense, the tran-

sition can be likened to a switch required to control local state

changes. Since there is no concept of action or token storage at

the transition, the transition has no attributes which impact the

state of its parent net--all transition attributes are configuration

attributes whose values are determined as part of the model

definition.

The TEPN transition is formed from the Petri net tran-

sition by adding two attributes: one impacts the enabling process,

the other controls the creation of new tokens during the

7transition firing process . The first attribute is the transition

firing template. The firing template controls the transition

enabling process by selectively filtering input tokens and

allowing only tokens of predetermined types to enable the transition.

The second attribute is called the transition token

template set. Since TEPN tokens are defined with attributes

there must be a mechanism for building new tokens with the attri-

butes requisite to correct operation of the model.

F The TEPN retains the basic transition firing" and enabling process
of the Petri net, as discussed in Chapter 3. %bile the transition
firing template and token templates alter scme of the specific
conditions under which transitions may becoae enabled and create
new tokens, the basic concepts of enabling and the firing remain
intact.



46

Definition 4.18 defines the TEPN transition; each of the

bvo attributes are then described and formally defined followiing the

general transition definition.

Definition 4.18 TEPN Transition

'The TEPN transition is a composite object which receives tokens

from adjacent input place nod~es, creates new tokens for trans-

mission to the output places, destroys the input tokens, and

transmits the new tokens to the output places for which they

we~re created. The configuration of each transition is defined

by the followiing two attributes:

(1) TFTS, a set of transition firing templates; anid,

(2) TrTS, a set of transition token templates

TEPN Transition Firing Template

In a Petri net, a transition is said to be "enabled"

whenever there is a token residing at each of its, input

places. Extending the TEPN place to include an internal token delay

mechanismi changes the definition of an enabled transition. Rather

than simply requiring that each input place have a token, a TEPN

transition may only be enabled by tokens that have been "released"

or "enabled" by the place after the required internal wait time.

The transition firing template extends the transition enabling

cxxiditions a step further by alloing selective enabling based upon

the types of tokens residing at the transition input places. Mokre

1FMO-



47

specifically, a transition firing template acts as a filter that

only allows tokens of prespecified types to enable the transition.

When there are two or more input places, the firing template speci-

fies not only the token types that may enable a given transition,

but the allowable combinations of input token types as well. For

example, if there are three input places which may emit tokens of

types A, B, and C, the enabling patterns might be (A,A,A), (B,B,B),

and (C,C,C). In this case, the transition will fire only when there

are tokens of the same type at all input places. Even though all

three types are "legal", the transition would not be enabled by any

combination not specified above (e.g., (A,A,B), (A,B,C), etc.).

The primary need for this extension arises from the

difficulty in the Petri net of modeling the deterministic

performance of systems with dynamically chosen multiple

execution paths. For example, when modeling the performance of

a disk subsystem, the modeling objective may require detailed

information concerning the performance of the system on a channel

by channel and disk by disk basis. If the workload can be shown

to be evenly spread across all of the subsystem components, this

objective does not present serious problems, since the aggregate

average performance will reliably model the performance of

individual components. However, in cases where certain channels,

controllers, 4nd disk drives are more heavily utilized, such as

a system in which the system software storage units may be

utilized with several times the frequency of use of most other



I
48

units, the model must allow for transactions (possibly represented

by tokens in this case) to deterministically specify the

execution path, a feature not intrinsic to the Petri net model.

In a Petri net, when there are multiple paths emanating from a

place there is no way of controlling which path will be taken.

The TEPN transition firing template solves this dilemma by

allowing only prespecified token types to enable the transition.

In addition to the extended modeling power that it

affords the TEPN model, the firing template often reduces the

number of nodes required to model systems by allowing several

independent paths originating in a common place node to be

collapsed into one path with multiple firing templates. 7his

advantage is demonstrated by the model presented in Chapter VI.

Definition 4.19 TEPN Transition Firing Template

A firing template of transition T is a function from the

set of 7ocal internal markings of all places in I(T), the set of

input places to transition T, into the boolean set, ENABLED, NOT

EABLED . In functional terms,

TFT:LIMi--. [ENABLED, NOT ENABLED],

where, LIMI is the current local internal marking of

place P., the jth member of I(T).

{J

I

I .. ,, . . -._ _ , . *l



49

TEPN Transition Token Template

Each transition' s output token template set defines the

tokens to be created by that transition during a firing sequence.

Because TEPN tokens have types and attributes, and because these

attributes are not global, each transition must have the information

necessary to build tokens with the 'proper" attributes. The mechanismi

for doing this is the token template, which, when executed, uses

the transition's input tokens as inputs and generates a single token

as the output. The set including one token template for each output

place is know~tn as the token template set.

Conceptually, an output token template is a function

from possible sets of input tokens possible output tokens.

There are a few attributes of the token template which

should be noted. First of all, while the input token set is used

as input to the token templates, the token templates are completely

independent of the transition firing templates. Secondly, the

concept of the token tenplate is independent of the particular

attributes of the tokens. The exact attributes, etc., are dependent

upon the system being modelecL Definition 4.20, below, formally defines

the transition output token template.

Definition 4.*20 Transition Token Template

A Token Template is a function from the set of sets of

possible input tokens into the set of possible output

tokens. Motre specifically, the token template defines the

transformation from the set of input tokens for a given



50

transition to a single token to be created during the tran-

sition's firing sequence and sent to an associated output

place. In mathematical notation:

TOKENi - 'r (TIS)

where,

TOKENj is the token being sent to place P

T7Tj is the token template associated with place P.,

TIS is the sequence of tokens which enabled the transition

(one from each member of I(T)),

P. is the .th place in the set O(T), 14 j C [OI(T)IJ

Execution of the TEPN Model

Just as the TEPN marking was defined in terms of two

observers, so the model execution might be described.

The external view of TERP execution is generally identical

to that for the Petri net. Mien there is an eligible token at each

transition input place the transition "fires" by removing the

enabling tokens from the input places and creating new tokens for

the output places.

jThe internal view of the execution introduces both the

firing and token templates within the transition and the time delay

mechaniwn within the place. Each of these extensions from the

Petri net have been individually presented earlier, and will not be

!

I



discussed again in this section. It is important to recognize that

the introduction of these features makes bc~th net performance

analysi.s and TEPN implementation as CPE tools more xmrplex tasks.



I

CHAPTER V

THE TIME-EXTENDED PETRI NET:

IMPLEMENTATION OF THE TEPN MODELING SYSTEM4

This chapter presents machine independent module and function

specifications which outline an implementation of the TEPN as a CPE

tool.

The format of these specifications is a data-object centered

decomposition using the methodology proposed by D. L. Parnas Parnas,

1972 in his extensive work on the specification of software systems.

This is a conceptual design stage and is transportable to many

potential host system implementations.

The first section of this chapter presents the objectives

of the TEPN modeling system and relates the system to the overall

goals of this Thesis. The second section overviews the TEPN system

design, concepts and organization. The third and final section is a

set of highest level module specifications.

Objectives of the TEPN Modeling System

The implementation of the TEPN has two major goals. The

first, and possibly most important goal is to provide an effective

test bed for evaluating TEPN models of non-trivial systems. Because

of computational caplexity, it is virtually essential to use auto-

52I1



II

53

ration to execute a TEPN model since at this time there are no

known techniques for analytically "solving" a TEPN model, as there

are for solving queueing models.

The second major objective of the TEPN system imple-

mentation is to evaluate the TEPN's cost-effectiveness as a modeling

tool. There are several areas which make up this trait, including,

(a) the time to build a model,

(b) the difficulty of validating models,

(c) the efficiency of the actual model execution, and

(d) the usefulness of the output.

System Design Overview

7he TEPN modeling System consists of two subsystems. The

first, subsystem DEFINE.TPN, provides the mechanism for the user to

define the structure, semantic, and performance evaluation

attributes of a TEPN model. The second subsystem, EXEC.TPN, ini-

tializes and executes a TEPN model according to user specifications

and outputs the performance statistics resulting from the model's

execution.

Each of these subsystems is decomposed into Parnas modules

centered upon the data structure and other major internal design

decisions.

I



54

Subs)stem DEFINE.TPN

The purpose of this subsystem is to assist the user in

designing accurate TEPN models and translating these designs into

internal structures that can be efficiently used to execute the

models. Figure 5-1 illustrates these objectives in terms of inputs

and outputs to the subsystem as a whole. The inputs, including

the TEPN structure, semantic attributes, and performance charac-

teristics, result from the manual network design process and are

input in the TEPN Network Definition Language (NDL). The

outputs are a network description in another format to assist

the user in ongoing model develcpment and the TEPN description

file for the TEPN execution subsystem.

EI,.ND DFINE TPN

S e- .I QL 8n rFn v.T ry

Figure 5-1 Subsystem DFINE.TPN



55

DEFINE.TPN consists of three modules:

(1) MODULE PARSER.NDL

Each DEFINE.TPN system is partially characterized

by a user-interface language called the Net Definition Language(NDL).

The NDL Parser accepts NDL strings and translates them into a TEPN

model that can be used by the execution subsystem.

(2) MODULE BUILD.TPN

This module consists of a set of functions which

my be used to build the internal structure of the TEPN model as

required by the execution system. This module shares data structure

with TEPN, PLACE, and TRANSITION modules in the EXEC.TPN

subsystem, since the functions must have knowledge of the internal

structure of these TEPN building blocks within EXEC.TPN. For

this reason, BUILD.TPN is itself partitioned into submodules,

each of which only deals with a single data structure (i.e., only

the PLACE, or the TRANSITION - not both).

(3) MODULE VERIFY.TPN

This module may be invoked by the user as a means

of verifying that the final TEPN resulting from the original NDL

definition is what it was intended to be. The functions in this

-- "."



56

iw)dule traverse the data structure and output a user-oriented

description of the TEPN structure and attributes as they are

currently defined.

Subsystem EXEC.NET

The EXEC .NET subsystem handles all of the work involved

in executing and observing the performance of a TEPN network.

Figure 5-2 schematically illustrates the work performed by the

subsystem.

TEPN bAT1% TEJ'N
STRUC(TURE PEFORMANCE
(I1N%., STAT6ISTC5

RLPRE5EMON)

i ~ ~ ~ ~ EEC -T'1P- .



57

The subsystem consists of six modules, each of which

are described below:

(1) MODULE INIT.TPN

This module accepts an unmarked TEPN (probably

from Module BUILD.TPN) and applies an initial marking to it,

thus beginning the execution cycle. his module is also respon-

sible for initializing and operating any "token generators"

required to simulate workload throughput. The designs of the

initial marking format and the token generation mechanisms are

localized within this module.

(2) MODULE MASTER.TPN

This module keeps track of upcoming events in the

execution of models. This module maintains an event timing (and

Nalarm") system which allows for orderly system execution.

(3) MODULE PLACE.TPN

The place data structure design is embedded

within this module, which consists of all functions used to

manipulate the place structure during model execution. In

addition to the functions required to execute the place, this

module also includes the set of functions required to support

the BUILD.TPN module of subsystem DEFINE.NET (although for



58

purposes of efficiency, these build routines are embedded directly

in the BUILD.TPN module.

(4) MODULE TRANSITION.TPN

Similar to Module PLACE.TPN, the TRANSITICN.TPN

module defines the design of the trainsition data structure and

supports all functions required to execute the TERP transition,

as well as those required to build and initialize the structures.

(5) MODULE TOKEN. TPN

The token is dynamically created and destroyed

during network execution and this module localizes all functions

related to those processes. In particular, this module consists

of the functions which build tokens frcm transition token templates

as well as from the initial marking defined by Module INIT.TPN.

(6) MODULE TEPN.TPN

This module maintains the internal data structure

that views the TEPN model as a whole, rather than in terms of

individual places or transitions. In terms of the original TEPN

definition (definition 4.1, of Chapter IV), this module maintains the

TEPN Input and Output functions, I(T.) and O(Ti ), respectively.

I



59

7EPN System Specifications

The remainder of this chapter presents the programming

Design specifications for the TEPN Modeling System. Three of the

modules, Modules TOKEN.TPN, 2RANSITION.TPN, and PLACE.TPN, form

what could be considered the "heart" of the system since they are

the direct implementation of the definitions presented in Chapter

four. The reader will notice that these modules' specifications

closely follow their formal definitions in Chapter IV.

In studying these specifications, it is important that

the reader understand their purpose. These are not omputer

programs. Nor, for that matter, do they define specific

algorithms or data structure designs. Rather, they are designed

to communicate the functions and operations that are part of each

module and information required to interface with each module.

The format for the specifications is uniform throughout.

For each nodule, there is a "header section" consisting of the

module name and a general description of the modules inputs and out-

puts. Each header section is then followed by a list of each function

defined for that module. In the case of the basic TEPN data objects,

these functions include not only actions upon the object but the

object's attributes as well. The format for the function specifica-

tions is:

A
I



60

Function: the function name with parameters in
parenthesis

po~ssible values: if the function is an at-
tribute which itself takes values, the value
range is specified here

parameters: the names and data types of any
input or output parameters

effect: the external effect that the function
wilThave upon parameters and other functions
(including calls to other functions)

initial value: if the function can take on a
value (i.e.., if the "Possible values" attribute
is other than "'none"), this attribute specifies
what, if any, initial value is assumed.



61

Subsystem DEFINE.TPN

Module Implementation Specifications

Module: PARSER.NDL

Module Description: Accepts a TEPN defined using the TERN

Network Definition Language (NDL) and translates the NDL

strings into calls to functions of Module BUILD.TPN. These

function calls are grouped into a network definition Ometa

file" which may either be saved or immediately passed to the

BUILI.TPN module for processing.

Impact upon other modules: Prepares calls to BUILD.TPN

Data Structure Unique to Module: NDL String

Function Description: This module is described by a single,

general function that parses NDL strings and creates

equivalent function calls.

Function: PARSE.NDL (NET.NDL, NET.BLD)

possible values: none

parameters: file NET.NDL; NET.BLD

effect: none



[i,

62

tdule: PARSER.NDL

Module Description: Accepts a TEPN defined using the TEPN

Network Definition Language (NDL) and translates the NDL

strings into calls to functions of Module BUILD.TPN. These

function calls are grouped into a network definition "meta-

file" which may either be saved or immediately passed to the

BUILD.TPN module for processing.

Impact upon other modules: Prepares calls to BUILD.TPN

Data Structure Unique to Module: NDL String

Function Description: This module is described by a single,

general function that parses NDL strings and creates

equivalent function calls.



63

Module: BUILD.TPN

Module Description: Accepts a set of function wrmwands prepared

by PARSER.NDL and builds the internal TEPN structure which is

then passed on to subsystem EXECTPN system. May also operate

using direct cowand file (not prepared by PARSER.NDL).

Inpact upon other modules: none

Data Structure Unique the Module: TEPN Data Structure

(PLACE, TRANSITION, TEPN)

Function Description: These functions form "virtual" submodules,

each of which centers upon a specific data structure and

is onceptually "tied" to an appropriate module in subsystem

EXEC.NET. For example, each place is built using functions

(e.e., BLD.PLA or NEW.PLA) within BUILD.TPN but specially designated

with a .PLA suffix. These functions whare "knowledge" of

the internal place data structure with module PLACE.TPN of

subsystem ECEC.NET.

i
I
!

! -

/



64

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SL'PSYSTEM: DEFINE.TPN MODULE: PL

FUNCTION: tlEhl.t Fl (PFW~rE-
FP::II:LE VtILUIE:: PLACE-IL.

EFFECT' rtire

PE:r rI PT 1131: EAc-4 PLACE IS A=ZIGNtEL. A GENERAL NAINE I THE
JE. r" A~t. AN ITEPNtJALt WAtE 1- THE S&ESTEM. THEpEpapE. or~t
OF THE PIPET FL-t4CTI(3r4 OF CPErTztW A4 NE14 PLACE IS TO AIsrIcti

FUN T I Eti: I:LII.F'L '.TYPE- TIN- TOIT,
PD:-IBLE VR7LLE: tNONE
PPR I1ETEF FLACE-IL- P LFCE-T.PE T'-iFE TPAEET TIri.TGO1

IIECFICIDII: ILDE THE PLACE INVEPNA4L STP..CTLIE .WITHOLIT
PAPAP'ETERI. THE TyPE 'lEFALLT DP 'ACTIlE - LETE~mIjE3
TWE TYPE OF STPUCTUPE THAT WIL-L VE USED'.

FUIN: T 1ONi: lE:LEIFC. FLA (F90. C;*TriTfM. tri
PD:: II'LE VPILLIE _.I ti
FqFl?"1ETEP'_: PLACE-ir, P- 'LISCIPLINE CI'I:C-

INTEGEW FLUtCTiot- TiTMN INTESEP Eltill
EFFECT: VC'iqSC. PF4 ) 0 1 C.

t9E:CPIFTj0?i: lNiIALIZIES TH4E ATTP13NUTEE OF T14E PLACE FICTII.E IOL'ELIE.



65

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SLIPSYSTEM: DEFINE.TPN MODULE: PLA

FLIfiCT10o .LlIF El:. FL9 F*CLi: *E

PAPPMETEPT: PLACE-1t P, rr-ISCXFLINE Or': :c; It.JTE'=EP jr4
EFFECT: 0111SC.FEC, (VF m Ul't1.

BDLIHI'PillF'

IIE:CFIFPTjr4: It*1XTXALI=EE THE CATlTR)E-TES OF TME PLACE ENAZLEZ OV.EV.E.

FLIHC TI Oti: I:LIFFF.FLFi (F. FF'ET-
Fo::Ilk.LE VFLLIE7: N4OtE
F,AiFltiETEPF-.: PLPCE- x . F, rFFrg'ET PFF:ET
EFFECT* PF (P' = FF*F (F', + FF.-ET

' :CFIFPT IONi: Tme socTI.'L PL04CE PEPFOPMANCE PLINCTltJ DEFINXTXOJs-
AE 10TH 1HF LEMEFJTAT Ll Pt N EPE ENVEJT. T IE FUNCT ION AZ=WtlE_-

ItLEMENTATION EvETEM '(UGSEETEX, POPn "DT COtltON FLNCTIOMZ' OR

TH4E USEP.

Iof
;Al



66

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SL'PSYSTEM: DEFINE.TPN MODULE: BuiLD

FUNiCTIONi: Hfi..1ET QiETNAHlE-
FO::IILE VAILUE:: TErt4-iv
PAPFIET E; -_ '4ET14 : fETf4'PE
EFFECT: NOtiE
2111TIFL VAiLLE: NONE

DiE iC:PI F*T 104: ASSIGNS INTEMNAL gESTEH NAME TO UEERGIIEN MAtIE FOM

TME EfATIPE TEFH MCOIEL.

FLNC T I ii: AI't'F1-. ET (Po T f4- TOLIT.-
FD::IE:LE WIlLLIE:: NOtNE
PFAMETEP: .: PLAscE-xS' P% -TpAEET TIN- TOOY

EFFECT:
Popp mpc* TpAssITze.J T IN T0.17. Tl?:ETTwTli:E-T-+F
P0"P EACH TPANEITsiON T IN TI11. TDUT:ET-'-T0ETO :E1.T,+F*

tiE:cFIlFTlD: ErST %IflEE PiCs- FfOt' FLA:4E F 'TO ITS OQTfPlIT TPktl-rlTIO'E

Alt PO1 ITS INPL'T TV0ANSITIO#NS To F.r

FUNC TI D: AllrTFf4. NE7 (To P114- POJT
PD:' 1 LE VAILVE:: NONE

PAPAtlETEF:: TPANSiTiorNj-Z. T; P-LASIET FIN. POUT
EFFECT: WOP ECm cLA~cE P IN PIN- TltlETT-TlN:ET-T-+F

ropp EACH PLACE P IN POUT. TOUT ET(T.STOUIT.ETtT-

1E:CpIPTlION: ESTAILISOS AiPCf f-ETNjEEN TPANXIT*otj T faMS ITS rL'

AtClZ ')TPVT PLACES.



67

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: DEFINE.TPN MODULE: BUILD

FLIiCTI~fl: N~EW..TF~i *Tf4A-E-

PFAF'irETE : : Att-STPP x TriArIE
EFFECT: 140?JE
INITIAL ViILUE: t4

lE.3IFTID'J: REIN ANJ INTEP.1 L PEWEPErj.:E tiAt*IE TO THE VE~I'~
TPA"I4ITI DtJ 1At1E.

Po: .IFLE VFLLIE Z -DJ

F'.1PAMETEVF:: TPAtJZITIOrJ-ir, T'- FLAEET Pfl. POUIT-
EFFECT: CALL AI'l'TFA.NET (T.FlIN.DLT.

I-E:r PIPT I ot: i~1: LZ THE INITIAL INTEPNIZL rTP-":TLlwE POP TmAtjrITIct,
A.JZI CALLS WlUNtCTIONj TO INSEPT TRANJEITIO. INTO T14E NET ZTPVZT~lpE. r

FL114C T I ONt: k:LI'TT. TrR eT.*TT1
FO0::I1:LE VALUE: N4E
PAPA M1E T E P w: TpAtulITioli-ir T. TO' TEMf:-ir. TTt-
EFFECT: TT:(,.T) = TT:.:T. + TT

IE--CF]F'Tl~fi: BUILDS3 THE TO*.Et TEMFLATE A-F ATT10I1UTE OF TPAtNZITiotJ T.



68

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SU'9SYSTEM: DEFINE.TPN MODULE: BuiLD

FUNCTION4: ILtIFT.TFti (TTFT,

FiF9RPAETEF:_: TOVAtJE!T10ti-Z1 T; FIPETEFIF-It 1
EFFECT: TFTT = TFTT, + TFT

DE7CPIFTIO?4: E:-ILX-z THE rpAraEiTior4 F1~jtN'- TEMF LATE A-- AT TP II Q- E

~ rPJEXTOrJT.



~69

I ul.-e: VERIFY.TPN

I bModule Description: This nodule allows the user to verify that

the TEPN structure built is the same as that which was actually

intended by the user. The nodule allows the user to examine

either a single node within the net or the entire net.

Inpact upon other Modules: Calls functions from other modules.

Data Structure unique to Module: none

Function Description:

MT

.



70

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SUOSYSTEM: DEFINE.TPN MODULE: VERIFY

FUN4CTI ON: VEFI FY#. F'LF4, fFt4fiE-
Fo: 1 ILE VYtLUE':NN
PFAMF~tETEPF:: PLFACE-NArmE F'IiRf-"E
EFFECT: DJ

iE-_CF1jFT0: F'ETLJ~ti COtlFPEHEN~rl..E 1.ESCP1FT1ON. OF f', _FE-Z1F1Er. FLACE.

FLINCTI0ti: VEFl FY. TPFtt TNFIriE
FO::IEIFLE VFtLLIE:: NONJE

F*FFltlTE'- : TPt~Ofrj-NA?.ME TlitiA E

EFFECT: tE

IE:I:FIFT1014: F:ETULI4Jr COt1FPEHP4Sl,.-E r.EECPX-pTi~O0 OF EFECXF-IEI TPAN-FTION.

FLIHC T I Oti: VEF I F.'. NET (t'IETNRi'E.

P~rf4METEP^. N.ETgNAE HETNAMrE
EFFECT: NtJtE

'E :CFIFPT10tl. P.ETU~tis TEFr4 rSTUCLPA. DEF IVITITM4.



71

Subsystem EXEC.NET

Module Implementation Specifications

List of Modules

Module Description

INIT.TPN Initializes TEPN for execution

MASTER.TPN Master control for TEPN execution

PLACE.TPN Place data structure

TRANSITION.TPN Transition data structure

DKEN.TPN Tbken data structure

IEPN.TPN General TEPN attributes (external)

I
I



I

72

I Module: INIT.TPN

Module Description: Module initializes TEPN marking and other

functions required prior to the execution of a TEPN.

Impact upon other Modules: Calls functions within other

modules.

Data Structure Unique to Module: Net initialization format.

Function Description:



73

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SUB SYSTEM: EXEC.NET MODULE: INIT.TPN

FLUNCTIONI: MRfFI FFi. iri F'N~fr'1E.706
P0:-IELE VALLIES: NONE

F'FAIETEF .I F LACE-NAME PHAifIE9 TOO-EN ir 7T01
EFFECT: P=F'LACEIL' *.FNir-IE-

CALL T~i F'F.F'L(A '.F. 70

DE: PFI PT IONi: INEPTS At INITIAL TrO*EN INTO A PLACE

FlirC TI 0 B: C I1TO1 1. I1 (T01 ATTFC _ ET.
PC: -1 IBLE YAILUE. I
FPArIETEF.: TOM EN MAflE 7TM TOO-EN ATTPIEQTE

SET ATTKIET
EFFECT: NONJE

D'E:CFPIPT I ori: BUlILDS_ AN4 INITIAL STATE TO*.EN &41TH

USEEP SUFPLIED ATTPIEITE SET.

FLUNC T IOrI: Pufrl. ~iN *PLI:7T
FO:I7IBLE VAILUE:: NONE
PAFAMETEF;: PLtq PAPAMETEP LIST" FL1IT
EFFECT: INITIALIZE ALL PUN P-APAN-ETEP?-

iE: CFPIFPT I OIt: THIS FUINCTION WILL ESTAILISH A4LL THE MECHAN4ISMS PEroUIPEr-
V, PUON PIAPAMETEPS. flINCE THESE APE IMPLEMENTATION CHAPACTEPISTICS At~eD
DO NO0T AFFECT TH4E TEFN. NO DESIGN is P-PESENTED IN THISE THESIS FOP
PAPAMETEP OPEPATION. AS A MINIMU~M' THE MODEL HALT CPITrEPIOPJ is
NEEDED AS A PAPAMETftP.



!t

74

Module: MASTER.TPN

Module Description: Master "control" module that keeps track

of events that need to be monitored and which are important

to the immediate operation of the net.

Impact Upon Other Modules: None

Data Structure Unique to Module: Future events list/chain.

Function Description:

I

[~



75

INTEC-Ep TIMlE.
EFFEC:T: ua1rm

[.E: CFPFT 10r4: THIS FlQJ':CTIOIj EEE~ A PL'TUPE Ea'ElJT, THE TPAt,-FIEP. or F
EEFEK.IE TOi-EvA I4 A4 SPECIFIED PLACE ~PO?1 THF Pf'MQ TO THE PE' A-T A*J
IALPEAr, DETEP~rilEr. TIME.

FVI4CTIOI4: FEVFPEM. MFI: * F. TIMEi

PF-tf~i'lETEr*:: FLACE-IZ' F * INTEC-EP TIME
EFFEC:T: tiarAE

r)E:CrPIFTIDri: DIELETES AN~ EWEJT FPOt THE FUTt.-PE EI-ENt VQLEQE.

FIACI4:T 01: NXTEV. 1-i:
F0' IlLE VFLLIE:w: Notm

PF1PMETEF': NONE
EFFECT: IF HALT PAPAMETEPE MET THE HALT EL'E

P=F. EVT ( (QNE': :T (FEY'vu
CALL FLRENRt (P)

t.E:;FIFTI0rl: ID*ENTIFIES THE NEmT Ev>ENT- IN THE FUTLIPE EIENTS r-EU.E Aljr

"EF1O-ET THAT VU.EUE ENTPw. PLAENR IS CALLED TO EtaAILE THE TO EN AT THE
kFtC' INJ THE AFPPPKATE PLACE. 'THIS TPIe-BEPS AN- NEbJLv ENAIBLEr'
TPANSIT20NS AND PEELLTINS CHANGES TO THE TEPH STATE.



I

76

Module: PLACE.TPN

Module Description: All functions concerning the internal

characteristics of each place.

Impact Upon Other modules: None

Data Structure Unique to module: PLACE

Fnction Description:

-i



77

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: EXEC.NET MODULE: PLACE.TPN

FLINC:T 0: PLAiCEl1 r FiF~f-lE-
PO:-IBLE VALUE7: PLACE-II.

EFFECT: Not4E
INITIAL WiLIE: NONE

RETISPtE THE ITEPtJAL FLACE-31' W"I
61WEN THE L'ZEP Z.EFluEI* FLAce NAftE.

1iE: CPIFT 1014

FUN:CTION: Boutirl. PFA f
P'IILE VRLUIE:.: NONEFOITIUE INYESEPE

PAFPr1ETEF-.: PLACE-Il. P
EFFECT: NoNE
INITIRL VALUE: HIGH\MLLIE:

YE:CFIFTIDN: SU OF THE FEC' ANI~r F-Ai'l torrz

FUNC'TION: PLAACT.FLA (P ! T t..:
PD:IIIPLE VALUIES: NoNE
F'AFPAVETEF*.:: PLACE-ir. P* TOIEN-ir TMt
EFFECT: CALL PAi0RAlj'I'LAi (FP.MT.)

I'E:_.':FIFTI~t: *'AcTII.'TEs- PLACE 1Por-N APP"VAL OF A TDKEN FP0?l
AN INPUVT "PANSITI014.



78

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: EXEC.NET MODULE: PLACE.TPN

FUNrCTION4: Cjit1C.FEC, -P,
Fo::I:LE VFILLIE:: rL'EQ.ElJS DISCIPLINE=
FIPFMETEF: FLACE-ir P

EFFECT: mOtE
IN4ITIAIL VRLIE: ItJ071NTE FPDOCE-sEO

DIE: C-PI PT IOm4 T.E~ FL&CE ENA.ILED' @SE.IE I Z Z'EF INEE I I DIAL
TwO FVYCTITOt4I SINCE T64ERE If PNO INTEPtW.4L Z'ELA.s P'JJCTlOfj
F-FFLIEV TO TOO-ENE ENTEPINS THE F-E('.
T"E li~rTRAL CI'UELIE1NC- 1'SCXPLINE XE "INFPINITE -POCE5EOf*

94HICH ALLO&JZr ALL TOI-ENF THAT HA' 'E COtIFLETED THE ltJATEF~tJAL

VELrA AT THE PAC.' TO se imt4EviotEL) A-'AILAI1LE TO EtJAIL.E
AIJD FIPE T"NEITIONJI.

FUNIC TI ON: JDL11r1t. FEC F
FU0:ILE VFILLIE:* fOD-ITIWE INTESE0
FP~tRPRETE7: FLA':E-I11 P
EFFECT: NorJE
INITIRL VRLUE! H I G HA.kL IE

riE:_CFIFPTZOH: C"JEt'e impir, w4 THE FEC'.

FUNrCTIONi SLE.PEC, (F'.:
F'D:.1LLE VALUE:: FOEITIv.E INTESEPE
FPlPFIIETEF : r-LP:E-:z P
EFFECT: NONE
INITIAL VALUE: (I

DE7CP1TION: -. IZE OF THE PEG'9 THE NUMHEPW OF TOIKFME THEPE.

FLIt IC TION: Z.IZE. FAQ (F.'
PD': IPLE VALUE : POSITIVE INTEGEPS
PAFAMETEF S:: PLACE-1V F
EFFECT: NONE

aINITIAL VF4LUE: 0

liEZC: I FT I Or:

1m=



79

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: EXEC .NET MODULE: PLACE.TPN

FuLINCTIoin~ I HTMr1F). .P -L F-
PO:: JELE VFILLE: SET OF TO$-EtlZr

FeRPIETEF : PFL.CE-r, F,

EFFECT: P4ONE

I'CPIFTJD'J PETi'Ptr THE ZIJTE'NP.L t4P' luG. THE SET O3F ALL
TO..ENE IIJ A FLACE.

P0:71:LE VAFLUE:: r4

PRAMETEPF:: PLACE-Ir, F; TOO-Eti-u1. TM~
EFFECT: II4Tt'14 *F- a INTr1Ai (F.- * TM~

IF Tm t 04E':T.PLFI'.RFA..F..
TitiE = Tt'TM.F'LA

IN~ITIAIL VAILLIE: N A

1EE.CP I T IGa: RMI zfACWIN,~ TOO-Eri. TDf - TO THE PROC OF FLAcE FP.
INTE~tNrLL., THE TOt EN WILL IEE INTEPTEl- ACCOR1IINCG
TO THE PRO z VO!EL'EIN- DISCIPLINJE.

FU'NCTI ON: C'?4E~iT. PLFI'C
PD:Z IELE VFILUE: : ToI-,ErN
FAFFIrlETEF:: PLI'EUE G; FLACE-IZ, P
EFFECT: HN

DE:CFPIPTIOrl: P'ETUPtJE THE "NEXT" TOK:ENJ OR THE TOOEPJ "ON TOP-
SCHEDULED. TO LEAV~E THE EVLE. IV T04ERE IS MORE THAN ONE 0A.AILAS:LE

TOO-EN TH4E FUNCTION WILL RETURN ONE CHOSEN AT PAt.rOti.



80

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SU9.ISYSTEM: EXEC. NET MODULE: PLACE.,TPIN

Fo0::1LE VILLIE- XlTEGEP

FF:irl1ETEP:l: FLACE-IV TO EvtIZ' T01
EFFECT: NO'JE

VE :CPJFT1O1M EECLTET THE .LAcc TbTII o*i THE :,C~fO,1:,J.EfJ

TmVE FuriCTIO14 IS DEFINED I, THE UTEP AT NET

ZEFINTIOtJ TIME AtJZ. MAi VEE THE A4TP I1k.TEE OF THE

TO ENj FR1: IN ITE C~tlFiUTATlI'.

FLOrCTl0ti: FLFi -EtiI'. PLRI .T~t TY^KET- T,
PM:.:IIBLE VALLIE:: NN

Fl9firETEF7: SET O EN-TyrEs TITo ZET-
TPANITimtj T

EFFECT: ENRFTOf .FPLA. TM T-,'E'
CALL FPEC'tEL.FLFi kF.TO1
CALL AilitlIftTOt .TPA (T.TOI

114TIAL VALLUE: A4

DE:CFIF'TI0N: Tpic-cEp-- FLACE TO EE-IA TOD EN OF ONJE OF THE

T'FESv TD~ TYFE TO TP0ANEITxoN4 T AEr r-FR OF A

TPA:NElTlOf FIRING~.

FL4C T I ON: PAN':;C.F'PL ,P-
P02 _IPLE VALLUE:: VQ.EVE VISCIFLINE

PPFIM~.ETEP:: rPLACE-iv P
EFFECT: NONE
INITIAL VALUE: LSEP INPQT

1.EwCFPIFTION: UEp s-ECIVIES EA4CH PROt V'UEUE DISCIFLINE.

4L



81.

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SUBSYSTEM: EXEC.NET MODULE: PLACE.TPN

FUNrC TI OH: F ACiJIi';. F'LVI F
FOD::IE:LE %F$LUE:: INVEGEW
FAFPr1ETEF _: F-LACEII P
EFFECT: NONjE
INITIAL VALIUE: NIEMYALLIE

VE:Cr*FFTIOH. C"'UEVE lOuuiX 'ONE tW EACHFA

FLOrC TI Or: TITrlI'EF. PLA -
FO::_IILE VALLIE7 FL'NTIOrJ K-EFI1ITIDJZr

FRAtrETEF:_-: P-LACE-Il, F
EFFECT: NONAE
INITIAL VALUSE: ZERO FL'NCTIotJ

IIE:CFPIFTIOS4: THE 1'ALLIE PETL'PNEE, IS A UZEP r-EFINEr FU'NCTION~
"HICH LUSES THE FUNtCTION4AL ATTPUULTE SET RE ISTE FA RAPIETEPZ
AND PETL'PIAE THE TO$-Ef DELA, TINE.

FUNC T I ON: ENATOF.. PLA'- TMs TYPE:
P IPLE V4LLIE_7I A TO VEN ID *NQLL

FAPANIETEFC7: TDO-EN TYFE T13t TYPE
EFFECT: NONiE
INI1TIRL VALUE: NUILL

IIE'.CPIFT ION: SEAPCHE!- THE PEQ!. IF IT FINDS AN EVNARLEr'
AND' READ, TO. EN NATHCZNG THE TYPE PASSEX'* IT PASES
THAT TyE-D

Idl



82

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SU'?SYSTEM: EXEC.NET MODULE: PLACE.TPN

FUNC TION1: F'ECIEL. FLAITDI * F
PO0:ULE VkLLIUE: No"JE

FRF~Ir1ETEF:- T01EtN-sI TOI - FLACE-hl' F*
EFFEC:T: !INTM9ft -F- - INTMR4F1 * F - TOf
INITIAL VA4LUE: N4 A

IiE':.C F IPT I Oi: DELETES A TO EN FPOtl TH4E F

FUNCTION.: E:YT11FP . PLA , P!
FO::IBLE VALIuE.: SET OF ORDEEDE FAip= tTOI T1 'E' It

TMtETYFE IS A TOO-EN TrE- NA IS A Nt.Jt-tEGAT11'E

ItATESEP
FPFpr1ETEF_-: rLACE-xrt F'
EFFECT: tNOtE
INITIAL VALUE: 14ULL

ESCPIF'TION: PETrupt.s A SET O3F OPPEPZ' FATPZ (.TDOEr, TYFE-

N~tIIEP OF TOKENS OF THIS TYPE AT PLACEF.

FUIICTIOri: SETT IM. PLR F- I'
FO::IIFLE VRLLIE:: NONE

PAFAMlETEF::A PLACEIIV F. NTEGEP I

EFFECT: TIME(F) = I
INI1TIAIL VALUE: N4A

DE.XFIFTIOm4 SET THE PLACE INTEPNAL CLOCI- TO A CEPTAIN TIE.

11



83

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SUtPSYSTEM: EXEC.NET MODULE: PLACE.TPN

FLflCTI1DN: NCI TIM. PLA~F..
PD: :xIILE VFiLLIE:: N~oNE
EFFECT: TIE-P' x TIME-PF -1
PAPAriETEPr' PLACEI! F
INI1TIeL VeLLIE: N A

tE:i:F IFTIONr: DEFINES' A r.Ec"EAEzNc- PLAC:E CL0:--) FOtJCTI~ti.

Fut4CTIOI: EPT01 FLAi TM' -F
F*0::wl:LE VFILUE:: TF'JE op FRL:E
PAPRIIETEF: : TOIENI TM FLACE-11 F
EFFEC:T: Norm
IriITIRL VALLUE: FFALmE

1IE-CFPI FT IOti: PETLIPtJs TPLIE IF TO~l IS ENAILE!. AND PEAV. IN
THE

FU4C T I Dr: PL4F I PE. FLFI F
FO::IE:LE VAiLIE:: NONJE
PRPRM1ETEF,7: FLACE-IV P
EFFECT: FOP EACH HEMJEP 7 OF F0'lTEI.TFriPF

CALL TPFFI RE. TFAf fI

11E -C PIFPT ION, Fop ALL ARCS OUT FPOl A4 ORLACE TO A TPRNEXTxO*JF
CALL A FUNCTION WHICH PIPES THAT TPRNSITIOtJ IF IT IS N014
EtJA! LED'.

FUN- T 1 0M F'ECfqt'ti. PL~iF.T TO
FD::II:LE VRLUE-: NONE
F'A9,rETEF-.: rLACE-1r! F. TOO-Ep-2i TOf
EFFECT: IF EFT01 PFLA-TOi .Fr

CALL F*LAFIF'E. F*LAFi,'
DE-CPIFTIOtl* f~t~ A ToveN To TH4E PEC, AN!, %UP!ATEs THE. ruEU..
IF THEPE 19 AN, CHANGE TO THE SET OF 1ENAELer ACTIWE TOs-ENZ

3 FUNCTION: APE CALLED WHICH CHECO- ALL O.'T'OING A"PCS FpOel

THIS PLACE AOND F IPE ANt NEW64Li ENAILE D ?PA NrI T I 011.

Iw



84

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SLUPSYSTEM: EXEC.NET MODULE: PLACE.TPN

FLN4CTIOr4: :EpLcF~

PF~f4METEF:: LOCAL M-O T' (" PLACE-ir, F
EFFECT: tNotE
IrAITIFIL Vi LQ.E: NONtE

IIE:CfrFFTID;4: PETLION-F THE gIZE OF A t'UEVE.

FUr':TI ON: FPROTIEL. PLRt FP

F*FiF.~itETEr,:! FLACE-1r, P
EFFECT: TOk Cr4E.T.FLtFAC'.P

CiL CIE.FLFP'Li F-T (f

TIMlE = TDTtl. FLII P TM

CA:LL FEV:CH.r1~c'. TI1E,
INITIRiL V~iLLUE: WR~.

,E: CF I PT I O4: TmAti-corIpF C'HE:T (F'FiC.P TO THE FtC, CALL11hr

FE':;<D. THEN THE PA1M7 Is FPE''IE$El' AND A FlUNCTION CALLED

TO INSEPT AN ENTP. iN THe FEYC' IF THE FEf is ty etilPT.

FLIrICT14: PLAFl~4i. FLVi- F ,
Ftr:IBLE VFILLIE: NOttE
F4P~RIETEFZ : FLACEit F,

EFFECT! CFILL PfirtEL.F'LFtF-

FE:CFIFTIOrl: tfAtNErEPE= THE NE-T TOVEN ONj THE FRc, TO THE FEC.-
THEN CALL3UCT~J WHICH LIPLE'ATE THE PROi Atv FE': At mA E

RESULTANJT STATE CMANtS TO TH4E TEPrI.



AD-AI05 381, AIR FORCE INST OF TECH WRISHT-PATTERSON AFS OH F/6 9/2
TIME-EXTENDED PETRI NETS.(U)
AUG 79 F B BERLIN

UNCLASSIFIED AFIT-CI-79-205T NL

SEND

,_10 
00 

0000,

17



85

Module: 7RANSITICN.TPN

Module Description: Contains all functions necessary to "execute"

the TRANSITION data structure.

Inpact Upon Other Modules: None

Data Structure Unique to Module: TRANSITION

Function Description:

I,

I:l



86

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: EXEC-NET MODULE: TRANSITION.TPN

FUlIC71014: TFPiE11A.TFRi.T.TFT-
P Il:LE VAtLU.: 1!OOLEAN LTFPUE-*FtiL'E2:;

FAF'Fr1ETEF7: TWANUE!TIO-tJ- T% PIPItMG TEMP-LATt IF7
EfFECT: moiJE
1t1ITIAL VALUIE: FRLCE

IE CPIFTIDri: C:HEC41:1 ALL OF TWAN-JITIOMi T rNr-UT PLACES ASAINESt
TRANS3TIOt4 FIPINS TEMPLATES.
IF EACH P-LACE HAE THE TOKEN WEVIPES. TO ENAILE THE TPAN.SITIONi.
THE FLtMCTION PETIONS THE TPUE' ANDr ALSO PETUPtIS THE ENAILINJ6
WIPINS. TEMWLATE- TFT- rop uSE INJ THE P3IN sErtcE MO4TE: THIS
FIRING MUST TE AN INrIt'ISISLE OPERATION.

FtiCT I Dli: TFRiF IFR. TPi.'T'
Fm: IkLE VFALLE::* NON*E
FAFAIIETEF:.: TpAt*JzxTxoti-iE. T
EFFECT: IF TrFfiEt4T.TFT:. THEli

CIRLL F'L7l:Ei.FL-TFT-T.IrlT0' :Eri-
CA:LL TTE>*EC(T.'ItTMt :ETI

11E;CPIPTID?i: EAcH TIME A4 TOVEN ENTEPS THE *NI~-Er
STATE! THIS FUNCTION IS CALLED' E? THE PLACE. IF A CALL TO
TFPiENA PETLIONZI 'TFUE ! THE TPANZITIOM If ENAZ-LEI AMI TOt EYJS

APE, COLLECTED FROtl THE PLACES AME4r ,ASEr AS A SET TO TTE :EC.

FUN4CTICfA: ProrrI TOK, . TPA (T . TM~
FDl.LE WILUE:: t-OE
PAPPETE:: TrpANrITIDN It. T. TOtEM-11 T01
EFFEC:T: INTM:ETtl= IriTOl-ETc.T: + TMt
INiITIAL VALU~E* Wk

lVEzoCPIT7DMe Arrzs A~ Tos:t-M TO THE END OF THE SET OF TO EPJS
COLLECTED FRDPI THE PLACES.



87

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SU'?SYSTEM: EXEC.NET MODULE: TRANSITION. TPN

FUNrC T ION: TTEXEC.TFAT. I rTOfSET:.
PO:;:IBLE VALUIE'S NONE

FWiriETEF7: TPANZITict4-ir T.Too-ENj SET 11470t :El
EFFECT: FO EAC TT IN~ TT 'T)

TDf =FIEIITD
FAi: (T01 -TT (Ir4T01 -ET'
T01 T' .FE TOt TT, r4T0I 'ET,
P=TTPLAt. TF4,TTl
CRLL Tr*A:El.I'-TDf,-F-

IITIAL VAILUIE N-A

IIE:IC:F I PT 1Ot: "E.ECITES" THE TPAtjSTlOfj TOO-EtJ TEVMPLATE I

CPEiATNt~e THE t4E& T01EN AND~ CALLS A FUN4CT IOt TO SEND' T"4'

TO- EN TO THE APFPOFPIATE PLACE.

FLUNC.T I ON: TT. TIT
F072IBLE VALLIE.: SET OF TOOENA TEMFLATEZ
PAPRPETE:::: rp~tjzITlON IV. T
EFFECT: tat*JE

INITIAL VALUE: N!ULL SET

IiE:.CFP'TIGH: PEruTV~s SET OF TOFEN TEMPLATEE.

Futii:T IOf: TTFLR. TRA 'TT)
PO2 .IBLE VALUE::. PLACE-IV

PAFAIIETEPF:: TO EN-TEMP- LATE jr. TT
EFFECT: NONE

INITIAL VALUE: NONE

ISECF I F*TI 0t4: PETUPNE THE PLACE-21- TO WHICH A TO,.EN MUST WE SENT.

IL



88

TIME-EXTENDED PETRI NET MODEL IMPLEMENIATION SPECIFICATIONS

SLURSYSTEM: EXEC.NET MDU(LE: TRANSITION .TPN

FUNCTION: TF~;4-E'.Tr-RTO~ *F:*
P:I ELE WILIE': t40'JE

PFFRMETER':: TOO-EJ-ir, TDI *F-LACEll, F
EFFEC:T: CALL FLfnifiT. FLAF *TC ,
11AITIRiL VRLUE: H4 A

DiE _7CF 1 T I U: TmE cti't:CTI lINTEP~rACE" iETWEE14 TPAWt I Ti oi
T rthr r-LACE FP N~it3tE&JL CPEATEZ TOO-Ef45 TO r-LACEF'

FUNCTION: TFTZ-.TF'T'
Fl::IILE VAlLUE;,: SET F13 T~kt4JrITIO.J FIPIiJ TEtI1LATEE

PAFANETEF-: TpANE1_7TIit T
EFFECT: N~oijE

INITIAL VALUE: NUILL SET

PE CF'IFTIOTi: SET Cc TPANIIj~TIOt4 PIPINS TEMPLATES.

I6-.1



89

Module: 1EPN.TRN

Module Descrpton Localizes functions concerned

with the overall TEPN structure and which require

maniulation of inter-ncd~al arcs.

IMpact Upon Other Modules.: rne

Data Structures Unique to Modue: TEWN



90

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

j SL'!?SYSTEM: EXCNTMODULE: TEPN. TPN

FLUCT IDtl: INTMAFI.. TFi4 TEPHt
PD : IFLE YALUE:: TEFH i I4TEPtAAL MAP 1 N-F

PFCAmETEF-: YEF-t4- . TEFr14
EFFECT: tjOfjE
1111TIFIL VfALLE: NotsE

FLIiC TI DN: E'2TMAF~l. TFF i TEF~li
PD::_IFLE VRLUE:: TEFi4 E' TEPtIJAL HAPO IJ.

PAFA~lETEF :: YEFr4-ir. TEFli
EFFECT: Notmz
INITIAL VALUE: li R

I)'lCFPIPTIOF4F ET'PNE TH4E cuppET E%:TERNFIL mrP. :ths 13F THE 7EF~li.
THIS FUNtCTIONJ Mf-, ALSO TE QEEr, AT THE ElJZ' OF THE PL*1 TO OUTPUT

FLIHCTID14: FEPF: TRT.TPti TEPN4
C:IPLE VALLUE:: tOrlE

P~AAMETEP. TEFN- ii TEPrH
EFFECT: NotNI
INITIAL VALLUE: N 'R

1'E: C.FP FT I F4: FETUttI THE CLIPPEtJT OP F I NAL FEPFOPtIAtCE STATIETICE
PO1A TEF14 ovuIN

FUIICTIO14: TINFI4.TP Ti
FD:':IBLE VALUE;7: SET OF PLACE!7

PRFAmETEF: TP6A!T:ot*J-ir T
EFFECT: NOtiE

INITIAL VALLUE: NULL SET

P'.C:PIPT I~ O:C:OW"ESP ONDS TO THE TWANSI X0 I NP UT FuNCT ION.

VEFINEb It THE iNASic TEP'r DEFINITIONJ AND PETLIAN!T THE SET OF
INPUJT *LACKS TO TWANSiTiot4 T.



91

TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SU9~SYSTEM: EXEC.NET MODULE: TEPN.TPN

F~LICT lOl: ToLITFN.TF'fI 'It

TO SETS OF TEPlI PLACES

FAPAMETEFQ : TPAf lT i-zfl T

INITIAL VALUE:

lUI;,F*T I N: C.CUPENEPCNZ TO TH4E TWANS TI flt FUN-CTIONJ EF INED

2i THE xRAic TEPfI DEFINITIOIJ At WPETUNS THE RET O3F OUTPUTV

PLACET Fpot1TANIW T.

FL1IC TI101: POLI' 'ET. TF14 F P
Po2_Z;IIBLE VALUIEA1 SET OF TPANSITWNS4
PFAFMETEFB: PLACE-It' F

EFFECT% NONE

INITIAL VALUE: NULL

IIE:CFIF'TID'i GWEN A P LACEIS'- PETUWNr~E THE SET OF ALL TPANSITXOUS

TO WHMICH OLITWAP~E A4PCE PROM THAT P-LACE CCOtJECT.

FUJC TIM 014: FAET. TFN iTEFIA

POUIBlfLE VALUE-D SET OF PLACEZ

F'FA;METEF'l:~ TErt-:Zx TEFN
EFFECT: NONE
INITIAL VALUE: NULL SET

tIE:C IFT IOi:

FUNC TI ON: TFA*- ET. TPN TEPN.
F0'::IFLE YAILUECI: SET OF TPANS:1TIOtIS

PAPPIMETEF:: TEP.NID TEPN

EFFECT: NON'E
INITIAL VALUE: HULL SET

IIE:-CFIP'TION:



r7

92

Module: TOKEN.TRN

Module Description: Contains all functions necessary to build

and delete tokens..

Impact Upon Other Modules: None

Data Structures Unique to Module: 7OKEN

Function Description:

I|

'I



93

*~ JTIME-EXTENDED PETRI NET MODEL I MPLEMENTATION SPECIFICATIONS

SURSYSTEM: EXEC.NETMOUE ON.P

FUHMODULE: TOKEN.TTPl

Fo:: U:.LE VALIJE::.

EFFECT: OE

INITIAIL VAFLUE: N

tiE7PIFTl~ti: CALLEX, TO CREATE ANE&- TO EPA ETPlUCTUPE tI

PETURN- THqE ZJTERNALII.

FUNiCTIONI: _FA'.Tui 1T01
F.0 ::IILE VtILLI: Ta.EtJ F-44'TFION14L ATT~1llTE EE'T-

PHrE TEF-: tot-EN-ir, TOP
EFFECT: matiE
IN4ITIAL VAILUJE- NULL SET

VE:CFIFTION: PETt.IPfiF TH.E TOK~EN Fe*(4ZTOt-rL ATRP1TE SEr kFA..

FLUr4TIci: TYPE. TOf (T~i

EFFECT: NotNE
1141TIAL VALUIE: Notit

IiE CPFl T IO01: Gjl"EtN A TVt-D*PETUP'!f. T04E TOI- ENT,'FE
flOTE THAT NOD ACT tOtS OP EFFECTS OPESL'LT FPOtl

THE TOP HOZL.t IT MEPELY CREATES W41- HOLDS AftJV WPOPTS ATTOIEWTEE
OF TOiE1,JS.

FUNICT IONt
PWT::-I LE VALUE.:



Chapter VI

A TEPN Model of a Disk Input/Output Subsystem

This chapter describes the application of the TEPN in

modeling the performance of a complex disk input/output subsystem.

Though this particular problem may, at first blush, appear as a

trivial problem not significant in demonstrating the TEPN's potential

for more general application, careful analysis shows that this case

study, which was motivated by a real rather than hypothetical

problem, requires a modeling methodology wich meets the goals

indicated in the Introduction to this Thesis. In particular, the

disk input/output system described below underscores the need for a

modeling methodology which can faithfully represent deterministic

behavior, process blocking, and the holding of multiple resources

by a process.

In describing the TEPN application, the chapter demonstrates

the EPN to be both useful and significant: useful in that it has

sufficient modeling power to model many complex systems, and significant

in that it can model systems which cannot be faithfully modeled by the

queueing network model.

The chapter is organized into three major sections. The

first describes the basic disk I/O configuration used throughout

the chapter and the modeling problems that emanate from this con-

figuration. The second section shows why the queueing network model

94

- - -



1

95

is structurally inadequate for modeling the exact structure of the disk

subsystem when either disk sharing or parallel path allocations are

employed. The final section presents TEPN models of the serial and

parallel implementations of the disk I/O configuration under study.

These sections demonstrate that TEPN models can represent both the

serial and the parallel cases.

Description of the Disk Subsystem Problem to Be Modeled

Subsystem Oonfiguration

Figure 6-1 illustrates the configuration of a small disk

subsystem representative of the type of disk input/output subsystem

W47MOLE A

DISK DNPUT/OUTPUT SUBSYSTE

FIGJRE 6-1

.~J]



configured to many data processing systems. Though the configuration 9

illustrated is very small1, it is nonethe less representative of many

larger disk subsystem in that the same conceptual difficulties are

encountered in rmdeling the smal ler configuration as are encountered

in modeling the larger configuration. 8

In describing this subsystem for modeling purposes, it is

necessary to describe both the phiysical configuration characteristics

andi the operational characteristics. The physical configuration

characteristics define the structure, or, by analogy, the syntax of

the system to be modleled. From Figure 6-1, we can note the following

physical attributes:

(1) the channels are crossbarred across both controllers,

with the result that either controller may be accessed by either

channel;

(2) each controller is attached to a finite and fixed

subset of the set of disk units and is part of a unique path from

either of the channels to any disk units not shared with another

controller;

8 A "conceptual" difficulty relates only to modeling power/capability.1 ib believe the TEPN is theoretically equipped to imdel any real disk
1/0 subsystem configuration. Wiether a very large system can be
s'physicallym mo~deled depend~s more upon the limits of the implemntation

of the mdel, and not the model itself.



97

(3) some disk drives may be shared by two or more con-

trollers (in this case, the second drive is shared) with the result

that there are multiple paths to each shared unit.

Ocntroller/Disk Path Allocation Algorithm

In addition to the above diaracteristics, all of Which

deal with the physical configuration of the disk subsystem, there

is another important, though diagrammatically invisible feature:

the controller/disk unit path allocation algorithm, or the algorithm

used to determine how to allocate and deallocate the controllers and

disk units when handling input/output requests.

There are twomajor path allocation algorithms in use.

The first, the serial algorithm, allocates an entire controller/disk

unit path to a transaction from the time the request is approved for

servicing until the transfer is omplete. In this case, if a disk

unit has to perform a seek operation before the data transfer opera-

tion can begin, the controller will initiate the seek and wait for

it to finish, not acoepting any other work during the idle period.

The parallel, or SEEK:READ/WRITE overlap algorithm, on the

other hand, only allocates devices when they are specifically re-

quired for a transfer or seek function. Once the controller has

initiated the seek operation, for example, the controller will be

available to service other transfer requests while it is waiting for

the disk to complete its seek operation. %hen the disk seek is

completed, the controller must be reallocated to complete the

i



98

path required for the actual transfer operation. Finally, when the

operation is omprlete, both units will be returned to the systemi

for allocation to other incomning and pending input/output requests.

Difficulties Encountered Vhen Modeling the Disk Subsystem with the
Queueing Network Model

The limitations of the queueing network mo~del were discussed

in Chapter II. This section presents some of these limitations as

they particularly apply to the modeling of the disk subsystem problem

discussed in this chapter.

Browne, et al [Browne, et al, 1973] describe the represent-

ational problems inherent to modeling a complex disk subsystem (i.e.*,

other than the trivial cases of single-controller, single-disk systems)

in which disk sharing and/or the parallel path allocation algorithmn

are employed. 9 In particular, they showed that the queueing network

model cannot mo~del the exact system interactions and that when these

interact-ions are crucial to the model it is currently necessary to

mo~del and simulate the subsystem using a discrete simulation language

model. Three of the difficulties which they cited are described

below.

9Browne, e2t al, studied performance characteristics of a large
* Control Data Corporation (CDC) system which included disk drives

especially equipped with the overlap algorithm.



$ 99
Process Blocking. There are two types of blocking which

may happen with a system such as the one above. The first involves

sinple queueing on the controllers, called primary blocking. In this

case, both of the controllers are busy, either initiating a seek or

performing a data transfer operation. In either case, the request

will be queued on the incoming path, and will have no effect upon

the disk units. Secondary blocking may occur when a controller

initiates a seek operation in a disk unit and goes on to service

another request, and is not free to begin a transfer when the seek

is copleted, and no alternate paths are free. Intuitively, every

time that the overlap feature is utilized there is an opportunity

for secondary blocking to occur.

Holding of Mltiple Resources. During its life cycle, each

disk request transaction must hold each of three resources: a chan-

nel, a controller, and a disk drive. Although the queueing network

model cannot directly model the holding of multiple resources if the

resources are always deallocated in the exact reverse order of their

original allocation, a queueing network model can be designed which

will faithfully model the system behavior. Such is the case with the

serial path allocation algorithm. If the parallel path allocation

algorithm is used, however, the controller and channel may be deal-

located and then reallocated in the middle of a transaction's life

cycle. This process cannot be faithfully modeled with a queueing

network model.

'I



Dterminism and Multiple Configurations. he need for a 10

deterministic model versus a stochastic representation is difficult

to see in some cases in which the wrkload and system~ characteristics

are such that the stochastic model closely approximates the real

system. Howver, when either fine-grain accuracy is important,

the workload characteristics are not easily "sumarized" into

stochastic functions, or the configuration may change, a dis-

crete, deterministic methodology is clearly more desirable and

sometimes essential. M *en fine-grain accuracy is important, the

deterministic model allows the analyst to model exact hardware

characteristics, rather than average service times. This may

be particularly useful, for example, for studying different disk

storage strategies (such as only using a certain block of tracks

on each disk drive). Cne particular advantage of a determin-

istic model is that it may more easily be trace-driven, thus

reducing the need to preanalyze and characterize the inpuit work-

load. Finally, when studying a variety of configurations, it is

somletimles important to have a model which would exactly quantify

the impact of secondary effects (such as the increase or decrease

in secondary blocking) before the effects are understood enough

to characterize theml stochastical ly.

TERN Model of the Disk Subsystem with Serial Path Allocation

Ihe description of the TEPN model of the disk subsystem

with serial path allocation is divided into three sections. The



101

first section deals with the model structure and configuration.

The second section builds upon that structure by defining the TEPN

model parameters which are characteristic of this particular model.

The final section concerned with the TEPN model of the disk subsystem

is a brief discussion of the model's operational characteristics.

Once a model has been defined for the serial path

allocation case, only a few modifications are required to convert

the model to represent the same disk subsystem with parallel path

allocation. hese modifications and the final model are presented

in the chapter's final section.

Disk Subsystem Structure and Organization

The TEPN model structure for the disk subsystem was designed

in three stages. 7he first stage was to decompose the two-crntroller,

three-disk subsystem into three separate disk subsystens, each of which

contains the data paths possible for transferring data to and from

one of the three disk drives. This system decomposition is diagram-

matically illustrated in Figure 6-2. Fran Figure 6-2 we can see that

the to controller three-drive disk subsystan can be modeled ascmbination of two sing le-oontrol ler, single-disk subsystens combined

with one dual-controller, single-drive subsysten. Figures 6-3 and 6-4

illustrate marked TEPN model structures which could effectively rep-

resent these two basic configurations. The reader should note that

the structure shown in Figure 6-4 is essentially identical to that

shown in Figure 6-3, with the exception that a controller may be

!



102

CONOLLPF1

WWkh.4A..

DiMUCO W

DIS &BSY~~ a)m)~ERDIK ATHDS~

I FIGURE 6-2A

D81
C E3T



103

a.

L
ra)

C.)

0-

Is~

z



fl

104

0.i

~cn I21

0

I
I I
I
I
I
~~mm~0-* - .



105

drawn fran one of two nodes named C TAVL instead of the single

CNTAVL node shown in Figure 6-3. The addition of the CNTBSY places

insures that the token is returned to one of two CNTAVL nodes after

the data transfer has been campleted. Table 6-1 presents the inter-

pretation of each of the places labeled in Figure 6-3, Figure 6-4,

and other figures throughout Capter VI; Table 6-2 presents similar

information for each of the transitions.

In order to model the entire two-controller, three-disk

system, we can canbine the models of the separate parts of the

subsystem into a single large model. This model is shown in

Figure 6-5. It is important to realize that this illustration only

shows the structure of the model. Fran this structure we can

determine only %at "states" are possible ("reachable") or other

analysis possible with a normal Petri net (since in the default

case the TEPN is equivalent to a Petri net). It is not possible,

however, to examine the model's time-resolved 22rformance without

introducing TEPN senantic (as opposed to structural or syntactic)

attributes.

Although the model in Figure 6-5 represents the disk

subsystem, one can quickly observe that a model built in this manner

would rapidly became very large and very cumbersome for all but the

simplest disk subsystems. Therefore, it is necessary to be able to

reduce or "collapse" this large structure into a simpler but

equivalent structure. An appropriate reduction method has been

suggested by both Petri net researchers and the TEPN definition.

II 4, -



106

NO 06-E to

*1Z

FigM an D6-5 
Rak-CWNfTe 

o ~ SOu~ ~ t y

XIER

-
-, 

'



107

PLACE NME PLACE INTERPRETATION/DESCRIPTION

DSKREQ A token at this place indicates that request for a data
transfer is waiting in the system.

CNTWT A token at this place indicates that the model or the
subsystem being modeled is in a wait state waiting for
a controller to become available.

CNTAVL The tokens at this place indicate the availability of
a controller in the system. In the cases of the models
in Figures 6-3 and 6-4 these places are bounded to a
maximum of one token. That token then becomes repre-
sentative of the exact controller for which the place
is designated.

DSKWT Wien there is both a token at place CNTWT and CNTAVL,
transition TI will fire and transfer a token to place
DSKWT. This place indicates that the model is in a
wait state for an available disk drive. In the case
of these models, of course, this disk drive is exactly
specified to be either disk number one, number two or
number three.

DSKAVL Tokens residing in this place indicate that a disk
drive is available for matching with the token at
DSKWT or in terms of the actual system being modeled,
a disk drive is available for matching with the
appropriate disk request.

DSKSEK Disk seek time is conposed of both track seek time
and rotational delay.

DESCRIPTIONS OF PLACES WITHIN
TEPN MODEL OF DISK I/O SUBSYSTEM

TABLE 6-1

I
I

I I



108

PLACE N PEACE INTERRETATION/DESCRIPTION

XFER The token at this place indicates that a data transfer
is under way and therefore that the disk/controller
path is in active state.

XFERCP A token at this place indicates that the transfer is
complete. Note that the same transition that sends a
token to this place also sends a token to both CNTAVL
and DSKAVL, thus "deallocating" both the controller
and the disk that was in use during the transfer
operation.

*XFERWr For each request being processed by the disk subsystem,
there is a token resident at this place. Vhen the transfer
is completed, the associated token is released with the
result that the local wait time of the XFERWT token is
exactly equal to the combined total wait times for all
aspects of handling the request.

CHNAVL A token at this place indicates channel availability.

CNTRTN This place is only included in the model illustrated
in Figure 6-4 and is required in order to allow a
token to return to either one of the CNTAVL places.
In terms of the actual system, this would allow the
controller to be deallocated to the proper place.
If controller A, for example, had been allocated as
part of the original transfer path, then the token
at CNTRTN would travel through to the transition
which has as its output place the CNTAVL associated
with controller A; and, similarly, if controller B
had been part of the allocated path, at deallocation
time the CNTAVL place associated with controller B
would receive the token.

*CNI'BSY The two places with this name (CNTBSYA and CNTBSYB)
match with place CNTRTN to insure that the token in
CNTRTN fires the correct CNTAVL place.

*Not included in Figures 6-3, 6-4, and 6-5 but included in the
final models of the disk subsystem.
**Only included in Figures 6-4 and 6-5.

DESCRIPTIONS OF PLACES WITHINTEPN MODEL OF DISK I/O SUBSYSTEM

TABLE 6-1 (Cont'd)* I!---~



109

TRANSITION INTERPRETATION OF FIRING

Ti [Any] Channel allocated to queued disk request;
transaction processing cycle begins.

T2 [Specified] Controller allocated to queued disk
request transaction; disk request queued on
[specified] disk.

T3 (Specified] Disk allocated to queued disk request
transaction; disk seek activated; channel
deallocated pending completion of disk seek
operation.

T4 [Any] Channel allocated for disk I/O operation;
disk I/O operation initiated.

T5 End of disk request transaction life cycle;
channel, controller, and disk unit
deal located.

*T6 [Specified] Controller returned to available
("idle") state.

*only included in Figures 6-4 and 6-5.

DESCRIPTIONS OF TRANSITIONS
TEPN MODEL OF DISK I/O SUBSYSTEM

TABLE 6-21

I
I
I

LI 4 - J



110

Within the Petri net, the reduction is based upon properties of

token types or colors. Research concerning colored petri nets

was mentioned earlier in this Thesis (see footnote 6, page 43).

With the TEPN, this reduction capability exists in the form of

transition firing templates and the companion token types and

token templates. Using the firing template concept, the model

of Figure 6-5 can be collapsed into a campact model which can

represent a disk subsystem of virtually arbitrary size and config-

uration complexity. The parameters necessary to form this reduction

are presented in the next section.

TEPN Disk Subsystem (Serial Path Allocation) Model Parameters

This section presents the TEPN model parameters %hich

are reguired to model the performance of the disk subsystem

presented in Figure 6-1 of this chapter. These parameters define

not only the characteristics of the controller disk interactions but

are also used to define the actual configuration of the disk sub-

system. The place attributes are primarily concerned, of course,

with time resolution, and therefore embody the attributes which

impact such things as disk seek time and data transfer times. These

attributes are the same regardless of the number of disk units or

controllers within the subsystem. They are also insensitive to the

I



configuration of these disks or controllers. The transition firing

templates are used in conjunction with the token types to define

the configuration of the disk subsystem. In particular, the tran-

sition firing templates are used to insure that only legal controller

disk paths are allocated. Without the firing template, for example,

any controller token could be matched with any disk token to enable

a transition which would eventually result in a data transfer.

While this might be acceptable in some systems, it is not acceptable

in a trace-driven mod~el ing envirornent where the specific disk units

are paired with disk requests and the performance of individual disk

drives and controllers is of concern to the analyst.

Transition Firing Template. The Transition Firing Template

determines the configuration of the disk subsystem by controlling

which controller tokens will match with which disk or disk specific

tokens while the net is in operation. Within the model of Figure 6-5,

the major reason for firing templates is to allow a m~ethod of matching

disk requests with the appropriate disk drive or unit and matching

disk units with controllers that can service them. For example, if

a disk request arrives for a transfer of data that is residing on, in

the real system, disk unit number two, we know that that disk unit

can be accessed through either controller A or controller B. However,

if another disk request arrives that must access disk unit nuiiber one,

this disk unit must only be paired with controller A. In Figure 6-5,

this problem is handled by having a separate model for each possible

controller/disk combination. Hoever, as mentioned before, such an

...........



112

aproach would require a very cumbersome network in even a small1

subsystem. A firing template that requires that the input token

from (CNTAVJ match a certain type token from OMIT, however, can be

used to guarantee that only the appropriate controller is matched

with the disk request. It is thus possible to "collapse" all of

the models for various controller/disk paths into a single model.

Therefore, the first firing template to be described describes

the match between controllers requests and disk units. Table 6-3

describes the firing templates required to model the actual con-

figuration shown in Figure 6-1, with serial path allocation;

Figure 6-6 shows the new model structure that results when these

firing templates have been imnplemented. Finally, Table 6-4 presents

the formal model structure definition (in terms of Definition 4.1)

of the structure in Figure 6-6.

Place Attributes. The place attribuites are divided into

three main groups: the attributes of the clock, the attribuites

of the Place Active Queue (PAQ), the attributes of the Place

Enabled Queue (PEQ), and the set of Place yerformance Functions

(PPF). Table 6-5 lists the values of each of these attribute groups

as required for modeling the disk subsystem with serial path al lo-

cation. Since each of the attributes were explained in Chapter IV,

j the table is presented with little additional explanation, beyond

the keys located at the bottom of the chart whkich define paramieters

used. 7he functions used to define the TDMh place attributes are

explained in Table 6-6.



I4

113

z
O00

H E-

ad c

-N fn Zl 0---

% % 1- 0>

434m 43- u4 l -

fn
E-iAL-

4JS o

5.



114

C"

.4-

LU Z

U4-

z~0

0

0

LAJ a.



115

DSKIONET -(P, T, 1, 0)

where,

P = {CHNAVL, DSKREQ, CNWT, CNTAVL, DSKWT, DSKAVL,

DSKSEK, XFER, XFERCP, XFEF&T1

T = (T1, T2, T3, T4, TOI

I (Ti) = DSKPEQ, CHNAVL} 0 (Ti) - {CNTWT, XFERWT)

I (T2) - {CNTWT, CNTAVL) 0 (T2) - {DSKWT}}

I (T3) - {DSKWT, DSKAVL, CNTAVL) 0 (T3) - (DSlcSEK, CHNAVL}

I: (T4) = {DSKSEK. CHNAVL} 0 (T4) - XFER)

I (T5) -{XFER, XFEF41T) 0 (TS) = {CNTAVL, DSKAVL, XFERCP,

CHNAVL)

TEPN Model Structural Def inition
Disk 1/0 Subsystem with Serial Path Allocation

Table 6-4

al



116

Token Attributes and Transition Token Templates. Token

attributes and, consequently, token templates are defined by the

specifications of the TEPN place and transition firing template

attributes. More specifically, the token functional attribute set

is derived primarly from the set of functions necessary for computation

of the token delay time mapping (TDIM) value for each place. These

functions can be identified in Tables 6-5 and 6-6 while the token type

attribute is derived fram the definition of the transition firing

templates, defined in Table 6-3. In addition to the token type and

functional attributes required of a token at its resident place,

many tokens are defined to carry additional attributes which are

required by other places later in the network. These attributes,

which are defined as members of the token functional attribute set,

could be viewed as "messages" in the process of being relayed

from thrir source to their destination. An eample of this is the

attribute "SIZ" which (from Table 6-5) is required to campute the

data transfer time for each request, shich is the TYIM value for a

token residing at place XFER The original source of this attribute

is the token from place DSKREQ, where each disk request is initi-

ated. In order to insure that this piece of information is available

at place XFER when it is needed, a "functional attribute transfer

path" is established and the attribute is passed along fron token to

token until it "arrives" with the appropriate token at XFER.

~~a



117

4J1
Gon

144

-44..

f-I

~Z. r1l C

an 'D P. 2
irN -r N M 7a .. m-

-. , - I3 u.
a0- 2-4

00

4 C4 C4 ~ * C4 *

P-4

-4 I .

0 02121



118

FUNCTION MNNONIC - DESCRIPTION

Request Inter- INTARR Returns the anount of time
Arrival Time prior to releasing the next

token from place DSKREQ

Request Number REtNUM Returns unique identifier
assigned to each new disk
request transaction.

Data Transfer Size SIZ Returns number of units of
data to be transferred to
this transaction.

Data Track Address TRK Returns the disk unit track
address of the data to be
transferred.

Disk Position FOS Returns the current track
address of the disk unit
read/write head.

Disk Seek Time SEKTIM Returns the disk track-to-
track seek time.

TOKEN FUNCTIONAL ATTRIBUTES
DISK MODEL OF DISK I/O SUBSYSTEM

TABLE 6-6

.. .. - .-



119

The token definitions required to represent the disk I/O

subsystem are presented in Table 6-7. Note that several of these

definitions show tokens with "canposite" token types. These types

are actually the concatenation of several types and are used to

preserve the identity of the resources allocated to each transaction

as the model is executed. The notation used in this table, while

new, is intended to be scmewhat self-explanatory. All definitions

employed standard set notation. In the case of composite token

types, lists enclosed in square brackets are single type elements.

Also, when ome of the elements of the domain set is itself a

set, the implication is that any of the "inner" set may be matched

with any other elements in the composite type to form a "legal"

ordered re-tuple.

The final information required to define the tokens is the

transition output token templates. These are implied by the

definitions of Tables 6-6 and 6-7 and are formally presented in

Table 6-8. Fbr brevity, the table utilizes a functional notation

to indicate transfer of type and attribute information. The

notation should be clear with the possible exception of the

notation TYPE - TYn (P), where n is a digit and P is a place

name. This indicates the particular element of the ordered

n-tuple which forms a ctposite type of a token fron place P.

The particular type value referred to can be determined fram

Table 6-6.

IMC=
K, -,



120

'-4~

I oc

-aC r C *4

[m -a



121

- - 0

IfIi; ~ ZnE-4

HH

II E-4 go4

0ow o
>4 E4

z En

0

o CE-4

E-4

E-4



Ii

122

TEPN Model of the Disk I/O Subsystem with Parallel Path Allocation

In order to effectively model parallel path allocation,

the model of Figure 6-7 must be altered to allow for a) the return

of the controller to the available state for the CNTAVL place

during the time period taken by a disk seek operation; and, b) the

reallocation of a controller from CNTAVL prior to the commencemnt

of the transfer operation but following the capletion of the disk

seek operation. 7he exact implementation of this required modification

to the original model depends upon the level of detail required for

the study. In most cases, for example, parallel path allocation could

be accurately modeled with the simplifying assumptions that

(1) the controller is automatically deallocated at the beginning

of every disk seek operation, and, (2) once the disk

seek operation is complete, the transfer will begin as soon as the

controller token is available. Assumption 1 does not take into

account the case in which there is no disk seek time. In this case,

the algorithm would probably be defined such that the controller would

not be deal located and the transfer operation would be allowed to

begin immediately. This assumption, however, is not considered

significant except in cases where very minute detail of modeling

is necessary, since this assumption would be expected to have little

impact upon the system performance. Furthermore, in the case where

the disk seek is indeed zero, one could assume that transition T-4

would immediately fire, thus causing the immediate real location of

Ci~;±d:i



123

the lost controller. The second assumption is certainly the more

significant of the two assumptions in that it ignores the extra

latency or rotational delay timie caused1 when a controller is not

immed iately available to service a disk drive that has just completedI

a seek operation. 10Therefore, in a system which is extremely busy,

in terms of request volume, and which has many disk units attached

to the same controller, this assumption could result in inaccuracy

of the results. In cases where the above assumptions are considered

unacceptable, a model may be farther modified to represent the

interactions at even the most detailed level.* The more complex model

is not included in this Thesis as it is not required to illustrate

any special capabilities of the TERN model.

Differences Between the Serial and Parallel Model

If the two~ assumptions mentioned in the last sect-ion are

made, only one strucural modification is required to convert the rmodel

into an accurate representation of the disk subsystem with parallel

allocation. This modification is to add an output arc from transition

Tl to places CNTAVL and a corresponding input arc to transition T4 from

place CNTAVL.

1 0 Addition of an automatic "average latency time" to the TDl!4

computed transfer time would only partially solve this prob~lem

since it would be based upon an assumption of a know~'n pattern of

latency delays which may not be the case.



124

This modification cause the controller to be returned to the

CNTAVL pool until it is required by another (or the same, at later

time) transaction. The new marked structure is illustrated in figure

6-7. The TEPN "structure definition" is also presented, in table 6-9.

This structural change requires a slight redefinition of the transition

firing and token templates. The new definitions are shown in tables

6-10 and 6-11.

Execution of the Disk Subsystem Model

Figures 6-8 thorugh 6-13 illustrates an execution sequence of

the model of figure 6-7 in which a disk request is traced through

its "life cycle" within the network. Although the diagrams are

sowhat self-explanatory, additional notes are included to help the

reader follow the example. For best understanding, it is suggeted

that the tables prensented earlier for the parallel path allocation

disk subsystem model be followd closely through the execution

cycle. Table 6-12 presents initial valves for each of the token

functions to be used in TDTM coputations. The cycle is broken

down into six steps, as follows:

1. New Request Arrives (fig 6-8) at place DSKREQ, specifying

the dirve required (DS eWM), (which is the token's type attribute)

data track address (TRK), the amounnt of data (SIZ), and a request

number (REQNLMB). Example attributes are shown in table 6-12.



125

DSKIONET =(P, T, 1, 0)

where,

P= (CHNAVL, DSKREQ, CNTWT, CNTAVL, DSKWT, DSKAVL,

DSKSEKI XFER, XFERCP, XFERWT}

T = {Ti, T2, T3, T4, T5}

I (Ti) - {DSKREQ, CHINAVL} 0 (Ti) = (CNTWT, XFERWT}

I (T2) ={CNTWT, CNTAVL} 0 (T2) = {DSKWT)

I (T3) ={DSKWT, DSKAVL} 0 (T3) = {DSKSEK, CNTAVL, CHNAVL}

I (T4) ={DSK.SEK, CHNALL) 0 (T4) ={XFER)

I (T5) ={XFER, XFERWT1 0 (T5) = {CNTAVL, DSXAVL, XFERCP,

CHNAVL)

TEPN Model Structural Definition
Disk I/0 Subsystem with Parallel Path Al location

Table 6-9

k-



126

(IM %v % .~*U~

41'41 0' *4-' 0' -4N

0

-4

0 -4

ru 2 hh: 5

z 0

I - .- 40 t

C - E- E-40



I

127

g z

0

i"iiIiii
E -4

E-4

F4 X

I

-. > E-4!4E

0u

0z

r4 EA* E-4E-



128

LA L

'1

S--4

r-4 N n -



129

Lii
uj)

C4-

I.-
64

0z

LC-,



130

3CI

:lI



Il

131

2. Channel Allocation (fig 6-9) of a channel to the request.

3. Controller Allocation (fig 6-10) of controller "A" from

place CNTAVL. Because of the token template defined for transition

T2, only controller "A' can be used in conbination with DSKIQ B "1"

to enable T2. Note that the type of the output token fran T2 to

ONKWT is a canposite type indicating the enitre channel-controller-

disk path being utilized.

4. Disk Allocation / Release of Controller (fig 6-11) of disk

"I" and controller "A'. Because the parallel path algorithm, the

controller is not retained during the disk seek time.

5. Disk Seek (fig 6-12) according at the pre-defined TDIM in which

WAIT = SERTIME * abs(TRK-POS). =]ms *(180-100) =80ms, using values

fram Table 6-12.

6. Transfer Begins (fig 6-12) and controller and channel are

both reallocated to the data transfer request. The transfer time

is computed according to the TDTM defined for place XFER. In this

case the wait time would be: SIZ * RATE = 50) block -25 ms.

7. Transfer Complete (fig 6-13) and all resources deallocatid. Note

merger at transition T5 with place XFEMT. This place is only for

recording the total wait time fro request processing, uhich for

this example would be total of the wait time, or: 50 ms + 80 ms=

130 ms.

I'

! .s



132

E-4

0%



133

-4

0 -0Iw
UE

I-

IC

Jo



134

Ei



135

-EJ

.~ -.0



136

4

E-4

E0

zu*W



137

Further analysis of the model and experimentation with various

initial markings will quickly reveal the versatility and the struc-

tural integrity of this model, and of the TEPN model in general.

Token Generation. The final question that will be discussed

in this Thesis concerning the example TEPN model is that of devi-

sing a method for continuous "generation" of input tokens, such as

the tokens which would cane to the DSKREQ place in order to evaluate

the subsystem performance. While an in-depth discussion of this topic

is not appropriate at this point, a brief presentation of some of

the natural alternatives offered by the TEPN is again illustrative

of the potential that the methodology has for CPE modeling.

In particular, we identify three ways that the TEPN can handle this

need:

1. Closed Network

By drawing an arc fram transition T5 to place DSKREQ, figure

6-6 can be transformed into a closed system which will continue to

arecycle" its "workload" indefinitely. In this case, the parameters

of DSKREQ tokens could be either drawn fran a randm field or kept

constant (to represent, for example, known "typical" requests). Figure

6-14 illustrates the resulting structure.

2. open Network/Randamly Driven

Figure 6-15 illustrates a second implementation method in which

a special "token generator" place has been added. The net would be

initialized by inserting a token at place TOKEN. After some deter-

I



138

S

C

S

55-'

S
--

5. ,~
--

S

S

5,

0 -~

z
5,



139

Ll4-

LA

LO-



140

mined delay time, transition T would fire, sending a token to DSKREQ

and returning a token to TOKGEN. 7he token template could be designed

to either retain standard parameters or to chose new parameters

either randomly or from a sepcrate source.

3. Open Network/Trace Driven

The model of Figure 6-8, finally, could be used as a trace dri-

yen model by simply defining the token template processor such that

a "READ ATrRIBUTE" operation used to obtain an attribute value for

inclusion in a new token could be an input from any source, inclu-

ding a file of actual system transactions. Note that this imple-

mentation does not require any modification to either the TEPN

Definition or to the implementation specifications. This implemen-

tation is illustrated in Figure 6-16.

'I[



2.42.

x

C

0

.4-

.4-

C)

C)

C)-
E>C) 2

.4-

f~C)>- 6..
4- -~

4-.
.~/,

L

3

0

C
C)

U

0

C-,

I
I

Ni



CHAPTER VII

SUMMARY AND CONCLUSIONS

The primary result of this research is the definition of

a new CPE modeling structure, the Time-Extended Petri Net, which

effectively retains logical synchronization and concurrency

characteristics of systems.

Cost effectiveness is an important consideration when

evaluating the potential of any CPE methodology. A further result

of this research, therefore, is the demonstration of the feasibility

to (1) develop an efficient computerized TEPN modeling system, and

(2) use the TEPN in analyzing practical CPE problems. The initial,

though limited results Included In this thesis demonstrate that the

TEPN is applicable to at least a small class of problems. More

research and testing will be required before the TEPN can be

declared to be a general CPE tool; this research is underway at

this time.

At this point, the use of the TEPN as a modeling tool

for many problems Is still a cumbersome task. There is still

considerable work ahead before the Implementation becomes efficient

and sufficiently user oriented to allow cost effective modeling of

large system evaluation problems. However, the results of this

Thesis seem to Indicate the potential for building and evaluating

effective models of such systems at a fraction of the cost of

building full-scale simulation models.

142

I



Appendix A

Decompositionl of a TEPN Model into a Petri Net

1 1 43



144

One of the stated advantages of the TEPN structure is

that it has the flexibility to "decompose" into a Petri net without

any alteration of the basic model structure. Therefore, the same

model could be used to study many theoretical properties (such as

state reachability) using the identical model.

Building a "default" Petri nel consists of steps:

(I) Define all places within the net with the standard

default parameters;

(2) Define all transition firing and token

TEPN Place Default Parameters

On an operational level, the TEPN and Petri net place

differ primarily in that (a) "time" is resolved within the place,

and (b) the TEPN place is capable of ordering its resident tokens

and using this ordering to control the exit of tokens to its

output transitions. In order to decompose a TEPN place so that it

is operationally equivalent to the standard Petri net place, there-

fore, one must define all attributes such that the above two

differences are eliminated. Such a set of parameters is shown in

table A-I.

The net effect of the default attributes is to:

(I) remove time resolution from the place by "deacti-

vating" the clock to a constant zero state,



145

(2) remove the concept of "token delay time" by defining

the TDTM as a constant zero function,

(3) define the place marking as a "bag" or set of tokens

rather than a queue or sequence by defining a queueing discipline

which has an infinite number of processors resulting in elimination

of any queueing delays, and,

(4) define the place as "tinbounded," in accordance with

the generalized Petri net definition.

If all places In the structure of figure 6-6 were defined

with default attributes and If transition firing templates were left

undefined, the net "performances" would completely revert to a Petri

net (although the internal structure would still be a TEPN, as

evidenced by the retention of a set of place performance functions.

TEPN Transition Default Parameters Default Transition Firing Templates

The Petri net transition has no mechanism for controlling

token flow other than the standard enabling rules. Therefore, the

TEPN transition default parameters must be defined such that the

enabling and firing rules conform to the standard: if a token exists

at each input places, regardless of the tokens' attributes. Therefore,

the default transition parameter set includes a null firing template

conforming to definition A.11, below.

Definition A-1. Null TEPN Transition Firing Template

A TEPN transition firing template is said to be null if



146

the transition will be enabled by any arbitrary com-

bination of input tokens as long as there is at least

one token at each input place. In functional terms, for

any transition T,

TFT(T) = "ENABLED" If LIMi O for every Pi in I(T)

where, LIMi is the local internal marking of place Pi.

Default TEPN Token and Transition Token Template

The only TEPN token attribute which is supported by the

Petri net is the token type , or "color". Therefore, all token

templates within a default transition are restricted to defining a
simple colored token. As with the TEPN, however, there is still con-

siderable flexibility as to how the color is determined.

The default TEPN token is defined by definition A-2. Based

upon this definition, the TEPN Transition Token Template will only be

concerned with they token type or color.

Definition A-2. Default TEPN Token

The default TEPN Token is a TEPN token with a null token

Functional Attribute Set (FAS).

1
!

~ - -.



147

Attribute Value Meaning/Remarks

CLOCK INACTIVE Place clock is a constant
zero

PAQ Queue IP "Infinite Processor" Queue
Discipline disciplines

PAQ Queue Bound o Infinite Queue Bound

PAQ TDTM D = FO(token) Constant zero delay time
function

PEQ Queue IP "Infinite Processor"
Discipline discipline

PEQ Queue Bound Infinite Queue Bound

Place Performance TPUT Total number of tokens
Functions throughput

QMAX The largest queue size
attained during run

QSIZE Average size of queue
from sample

Place Attributes of "Default" Place
Table A-i

1



BIBLIOGRAPHY

Alexander, W.P., III. "Analysis of Sequencing in Computer Programs
and Systems," Department of Computer Sciences technical Report
TR35, PhD Dissertation, The University of Texas, Austin, Texas,
August 1974.

Anderson, J.W. OPrimitive Process Level Modeling and Simulation
of a Multiprocessing Computer System," PhD Dissertation,
Department of Computer Sciences, The University of Texas, Austin,
Texas, May 1974.

Baer, J.L. "A Survey of Some heoretical Aspects of Multiprocessing,"
2Comuting Surveys, Volume 5, Number 1, (March 1973), pp. 31-80.

Baer, J.L. "Modeling for Parallel Computation: A Case Study," in
Proceedins of the 1973 Sagamore Computer Conference on Parallel
Processing, Syracuse University, (August 1973).

Baskett, Forest, III. "Mathematical Models of Multiprocessor
Computer Systems," PhD Dissertation, Department of Computer
Sciences, The University of Texas, Austin, Texas, December 1970.

Berztiss, A.T. Data Structures 7heory and Practice. Academic Press,
New York, 1971.

Bredt, T.H. Analysis of Parallel Systems, Stanford Electronics
Laboratories TR-7, Stanford University, August 1970.

Brice, R. "A Study of Feedback Coupled Resource Allocation Policies
in a Multiprocessing Compter Environment," Technical Note
TSN-35, PhD Dissertation, Department of Computer Sciences, The
University of Texas, Austin, Texas, August 1973.

Browne, J.C.: Chandy, K.M.; Brown, R.M.; Keller, T.W.; Towsky, D.F.;
and Dissky, C.W. "Hierarchical Techniques for the Development
of Realistic Models of Omplex omputer System," Proceedings
of the IEEE, Volume 63, Nmber 6, (June 1975).

Buzen, J.P. "Queueing Network Models of Multiprogramming," PhD
Dissertation, Harvard University, Cambridge, Massachusetts,
August 1971.

Case User's Manual, 7ESDATA Systems Corporation, McLean, VA, 1962.

148



149

Casstevens, B.J.B. "A Simulation and Analytical Modeling Package
for the Design and Evaluation of Complex Omputer Networks,"
Masters Thesis, The University of Texas, Austin, Texas,
May 1975.

Commoner, F.; Holt, A. W.; Even, S.; and Pnueli, A. "Marked directed
graphs," J. Computer and Systems Science, Volume 5, Number 9
(Oct. 1971), pp. 511-523.

Efron, R., and Gordon, G. "A general purpose digital simulator and
examples of its application. Part I: Description of the simu-
lator." IB4 Syst. J., Volume 3, Number 1 (1964), pp. 22-34.

General Purpose Systems Simulator II. Form B20-6346, IBM Corp.,
hite Plains, N. Y., 1963.

Holt, A.W., Saint, H., Shapiro, R.M. and Warshall, S. "Final Report
of the Information System Theory Project", Technical Report
RADC- R-68-305, Rome Air Development Center, Griffis Air Force
Base, New York, September 1968.

Howard, J.H. "Coordination of Multiple Processes in Caputer
Operating Systems," PhD Dissertation, Department of Computer
Science Technical Note TSN-16, The University of Texas, Austin,
Texas, December 1970.

Johnson, D.S. "A Process-Oriented Model of Resource Demands in
Large Multiprocessing Computer Utilities." PhD Dissertation,
Department of Computer Science, The University of Texas, Austin,
Texas, August 1972.

Keller, R. M. "Formal verification of parallel programs," Camm. ACM,
Volume 19, Number 7 (July 1976), pp. 371-384.

Keller, T.W. ASQ Manual, Department of omputer Sciences Technical
Report TR-27, The University of Texas, Austin, Texas, October 1973.

Kiviat, P. J., Villanueva, R., and Markowitz, H. M. The SIMSCRIPT II
Programming Language. Prentice-Hall, Englewood Cliffs, N. J.,
1969.

Lien, Y. E. "Termination properties of generalized Petri nets,"
SIAM J. Computing, Volume 5, Number 2 (June 1976), 251-265.

Lucas, H.C. "Performance Evaluation and Monitoring,"
Surveys, Volume 3, Number 3, (September 1971) pp. 79-91.



MacDougall, M.H. "Computer System Simulation: An Introduction," 150

Computing Surveys, Volume 2, Number 3, (September 1970),
pp. 191-209.

Nielson, N. R. "ECSS: An Extendable Computer System Simulator,"
Proc. Tfhird Conf. on Applications of Simulation, Los Angeles,
California, 1969, pp. 114-129 (ACM/AIIE/IEEE/SHARE/SCi/TIMS).

Noe, J.D. "A Petri Net model of the CDC 6400," Report 71-04-03,
Computer Science Department, University of Washington, Seattle,
Washington, 1971.

Noe, J.D., and Nutt, G.J. -Validation of a Trace-driven CDC
6400 Simulation,- Proceedings Spring Joint Computer Conference
(May 1972), pp. 749-758.

Noe, J.D. and Nutt, G.J. "Macro E-Nets for representation of
parallel systems," IEEE Trans. Comp. Volume C-22, Number 8,
(Aug. 1973), pp. 718-727.

Parnas, D.L. "A Technique for Software Module Specification with
Examples" Ccmm.ACM, Volume 15, Number 5, (May 1972) pp. 330-336.

Peterson, J.L. "Modeling of parallel systems, " PhD Dissertation,
Department of Electrical Engineering, Stanford University,
Stanford, California, December 1973.

Peterson, J.L. "Petri Nets," Co ting Surveys, Volume 9,
Number 3, (September 1977).

Peterson, J.L. "Colored Petri Nets," personal correspondance and
telephone conversations with F.B. Berlin (April, 1979).

Petri, C. A. "Kcmmunikation mit Automaten," Schriften des Rheinisch-
Westfalischen Institutes fur Instrumentelle Mathematik an der
Universiiat Bonn, Heft 2, Bonn, W. Germany 1962; translation:
C. F. Greene, Supplement 1 to Tech. Rep. RADC-TR-65-337, Vol. 1,
Rome Air Developent Center, Griffiss Air Force Base, N. Y.,
1965, 89 pp.

Ramchandani, C. "Analysis of asynchronous concurrent systems by
timed Petri nets," PhD Dissertation, Department of Electrical
Engineering, MIT, Cambridge, Massachusetts, 1974; also
rMC TR 120, Project MAC, MIT, Cambridge, Massachusetts, (February
1974).



151

Rodriguez, J.E. "A (kaph model for Parallel Computations,"
Project MAC TR-64, PhD Dissertation, MIT, September 1969.

Schwetman, H.D. "A Study of Resource Utilization and Performance
Evaluation of Large Scale Computer Systems." TSN-12, Computation
Center, The University of Texas, Austin, Texas, July 1970.

Sherman, S.W. "Trace-Driven Modeling Studies of the Performance of
Computer Systems," Computation Center TSN-30, PhD Dissertation,
Department of Computer Science, The University of Texas, Austin,
Texas, August 1972.

Sherman, S.W. and Browne, J.C. "Trace-driven modeling: Review and
overview," Symosium on the Simulation of Computer Systems,
Gaithersberg, Maryland, June 1973.

Sherman, S.W., Howard, H.H., Jr., and Browne, J.C., "Trace-Driven
Studies of Deadlock Control and Job Scheduling." Lecture Notes
in Computer Science (edited by G. Goos and J. Hartmanis),
Springer-Verlag, Nw York, 1975.



152

VITA

Frank Brett Berlin was born in Minneapolis, Minnesota, on

June 15, 1950, the son of Lorraine Stanley Berlin and William August

Berlin. After canpleting high school at Vicenza American High School,

in Vicenza, Italy, he entered the United States Air Force Academy in

June, 1968. In 1972, he received the Bachelor of Science degree and

was cammissioned a second lieutenant in the United States Air Force.

Since 1972, he has been employed as an Air Force Officer working in

the field of canputer science in various locations in the United States

and abroad.
I

Permanent address: 7011 Isabelle Dr.
Austin, Texas

This thesis was typed by Becky Cunningham, Alicia Guice, Trudi Berlin,
Susan Dakkon, Dawn Murphy, Jan Oppenheimer, and Kathi Nolen.

)




